
A Theory of
Functional

Programming

Eric Normand

LambdUp December 6, 2017

https://purelyfunctional.tv/

Newton’s Laws of
Motion

1. Inertia

2.
Acceleration

3.
Action-reaction

Force

Mass

Distance

Time

Aristotelian
Physics

(excerpt)

Ideal speed

Natural place

Natural motion

Unnatural
motion

For the video and transcript
of this presentation,

click here:

https://lispcast.com/lambdup-2017-theory-functional-prog
ramming/

https://lispcast.com/lambdup-2017-theory-functional-programming/
https://lispcast.com/lambdup-2017-theory-functional-programming/

Why use Functional
Programming?

What is Functional
Programming?

paradigm

a philosophical and theoretical framework of a scientific

school or discipline within which theories, laws, and

generalizations and the experiments performed in

support of them are formulated

Merriam-Webster

https://www.merriam-webster.com/dictionary/paradigm

philosophical or
theoretical framework,

world view

theories, laws,
generalizations

basic assumptions, ways
of thinking, methodology

Why use Functional
Programming?

What is Functional
Programming?

Goals of my Theory
• Explain what it is we (functional programmers) actually do

• in terms we can all understand

• Explain why it has advantages over other paradigms

• to people who haven’t done FP

• Avoid focusing on features

• Give explanatory and predictive power

• Self-described functional programmers should agree

My Theory of FP

Actions

Data

Calculations

Actions
the process of doing something, typically to achieve an aim

• Typically called Effects or Side-effects

• Depend on when you run them or how many times you run them

• Examples

• Sending a message over the network

• Writing to file system — other programs can see the change

• Changing or reading mutable state

Data
factual information used as a basis for reasoning, discussion, or calculation

• Inert

• Serializable

• Requiring interpretation

• Examples

• Numbers

• Bytes

• Strings

• Collections

Calculations
computation from inputs to outputs

• Mathematical functions

• Eternal — outside of time

• Referentially transparent

• Examples

• List concatenation

• Summing numbers

Contrast with OOP

OOP

Objects

References

Messages

Implementation

Haskell

• Data — built-in types and defined types

• Calculations — functions

• Actions — IO type

Implementation

Clojure

• Data — built-in types

• Calculations — pure functions

• Actions — impure functions

Further down the rabbit hole

• Everything “First-class”

• Data

• Calculations

• Actions

• Minimum necessary to program functionally in a language

Domains are separate
Data

Data + Data => Data

Examples

• Addition

• Concatenation

Calculations

Calc + Calc => Calc

Examples

• compose

• juxtapose

Actions

Actn + Actn => Actn

Examples

• in sequence

• in parallel

Actions
• Contagious!

• Calculation + Action => Action

• Data + Action => Action

• Examples

• Print the square of a number — square => print!

• Parse the input as a number — read! => parse

Calculations
• Algebraic manipulation

• Turing complete

• implies the Halting problem

• Opaque

• What is this code going to do?

• Only way to know is to run it

Data

• Can represent something else

• Structure

• Known Big-O complexities

Refactorings
Actions

• Action => Action + Calculation

• Action => Action + Data

• Action => Action + Action

Calculations

• Calculation => Calculation + Data

• Calculation => Calculation + Calculation

Actions are universal

Actions

Calculations

Data

What counts as an Action?

Calculations

Timeless

Actions

Bound in time

Pure function Read/write to disk

Pure function
takes 24 hours to compute

Read/write to temp file as buffer

Actions
how many times they run

always matters - 0≠1≠more
launching a missile
sending an email

idempotent - 0≠1=more
setting public flag to true

free of side-effects - 0=1=more
GET request

reading mutable state

Actions
when they run

transactional read
guaranteed to be consistent

transactional+serialized writes
Order matters, but at least it’s some order

exactly once reads
Communicating Sequential Processes

Eric Normand

Follow Eric on:

Eric Normand @EricNormand
eric@lispcast.comlispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com
https://lispcast.com
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://www.linkedin.com/in/eric-normand/

