
A Theory of
Functional Programming

April 2020
Eric Normand

lispcast.com/gs

TSSIMPLICITY (50% off)

What is functional programming?

Functional programming is a set of skills

Why functional programming?

Distributed systems

3 Levels of Functional Programming
1. Distinguishing Actions, Calculations, Data

2. First-class abstractions

3. Building composable models

Part 1: Distinguishing Actions, Calculations, Data
● What are actions, calculations, and data?
● How the spreading rule makes actions pernicious
● Recognizing implicit inputs and outputs to functions
● Immutability

☑Actions
☐Calculations
☐Data

☑Actions
☑Calculations
☐Data

☑Actions
☑Calculations
☑Data

Copy-on-write

Copy-on-write rules
1. Make a copy
2. Modify the copy
3. Return the copy

Defensive copying rules
1. Make a deep copy as data leaves the safe zone
2. Make a deep copy as data enters the safe zone

Part 2: First-class abstractions
● First-class values help you abstract
● Higher-order iteration (map, filter, reduce) helps clarify your for loops
● Chaining map, filter, and reduce gives you data transformation in steps
● Timelines help you understand how your code might execute
● Higher-order actions help you control your execution

First-class values
function setPriceByName(cart, name, price) {
 var item = cart[name];
 var updatedItem = objectSet(item, 'price', price);
 return objectSet(cart, name, updatedItem);
}

function setQuantityByName(cart, name, quantity)
function setDiscountByName(cart, name, discount)

First-class values
function setPriceByName(cart, name, price) {
 var item = cart[name];
 var updatedItem = objectSet(item, 'price', price);
 return objectSet(cart, name, updatedItem);
}

function setQuantityByName(cart, name, quantity)
function setDiscountByName(cart, name, discount)

First-class values
function setFieldByName(cart, name, field, value) {
 var item = cart[name];
 var updatedItem = objectSet(item, field, value);
 return objectSet(cart, name, updatedItem);
}

Replace body with callback
for(var i = 0; i < foods.length; i++) {
 var food = foods[i];
 cook(food);
 eat(food);
}

for(var i = 0; i < dishes.length; i++) {
 var dish = dishes[i];
 wash(dish);
 dry(dish);
 putAway(dish);
}

Replace body with callback
for(var i = 0; i < foods.length; i++) {
 var food = foods[i];
 cook(food);
 eat(food);
}

for(var i = 0; i < dishes.length; i++) {
 var dish = dishes[i];
 wash(dish);
 dry(dish);
 putAway(dish);
}

before

after

body

before

after

body

Replace body with callback
function forEach(array, f) {
 for(var i = 0; i < array; i++) {
 f(array[i]);
 }
}

forEach(foods, function(food) {
 cook(food);
 eat(food);
});
forEach(dishes, function(dish) {
 wash(dish);
 dry(dish);
 putAway(dish);
});

Chaining map, filter, reduce
// Average order of a good customer

var sum = 0;

var count = 0;

for(var i = 0; i < customers.length; i++) {
 var customer = customers[i];
 if(customer.purchases.length > 5) {
 for(var p = 0; p < customer.purchases.length; p++) {
 var purchase = customer.purchases[p];
 sum += purchase.total;
 count += 1;
 }
 }
}

var average = sum / count;

Chaining map, filter, reduce
// Average order of a good customer

var goodCustomers = filter(customers, function(customer) {
 return customer.purchases.length > 5;
});

var purchases = flatMap(goodCustomers, function(customer) {
 return customer.purchases;
});

var purchasePrices = map(purchases, function(purchase) {
 return purchase.price;
});

var sum = reduce(purchasePrices, 0, function(a, b) { return a+b; });

var average = sum / purchasePrices.length;

Part 3: Building composable models
Modeling facts with data

The closure property lets us create infinitely complex expressions

Data can be interpreted in many way

A word about data modeling
Data modeling is next-level

You can get by without it

Just add complexity

Sum types, product types, combinatorial types

Modeling a Starbucks coffee
Lots of options (tall, venti, grande, decaf, dark, medium, light, blonde, soy,
espresso shot, almond, vanilla, etc, etc)

How to represent all of these that allows

● Calculate price
● Produce the coffee
● Track popularity
● Send it to a central location

Modeling a Starbucks coffee
{

 "size" : "grande",

 "brew" : "decaf",

 "additions" : [

 "soy",

 "almond"

]

}

Modeling a Starbucks coffee
{

 "size" : "grande",

 "brew" : "decaf",

 "additions" : {

 "soy": 1,

 "almond": 2

 }

}

Modeling a coffee editing process
Several different editing operations possible

Represent the intentions of the user to allow for

● Undo/redo
● Representation in previous coffee model

Modeling a coffee editing process
[

 ["set size", "venti"],

 ["set size", "grande"],

 ["add", "mocha"],

 ["set brew", "dark"],

 …

]

Where to find me
Blog: lispcast.com

Podcast: lispcast.com/podcast

Clojure & functional programming video courses: purelyfunctional.tv

Clojure Newsletter: purelyfunctional.tv/newsletter

Twitter: @ericnormand

