
ClojureScript:
I can't believe this is 

JavaScript

Eric Normand

https://purelyfunctional.tv/


Clojure transpiled to 
JavaScript



ClojureScript
I can’t believe this is JavaScript!



For the video and transcript 
of this presentation,

click here:

https://lispcast.com/clojurescript-cant-believe-javascript/

https://lispcast.com/clojurescript-cant-believe-javascript/


Callback Hell



Callback Hell

• JavaScript uses callback-style for async

• Not just about indentation

• About inversion of control

• I don’t know when or in what order or even if 
my code will be called!



JavaScript vs Callback hell
• Promises

• Helps a lot!

• Still have promises within promises within 
promises

• async/await

• nice!

• Together: wow, a really good solution!



ClojureScript vs Callback Hell

• core.async

• A library that turns sequential code into 
callbacks

• Never give up control

• Based on Communicating Sequential Processes

• (the same thing Go is based on)



Code Optimization



Code Optimization
• Milliseconds === $$$$

• Minify code

• Remove dead code

• Split code



JavaScript vs Optimization
• webpack

• minification

• dead code elimination

• splitting

• Rollup

• tree shaking



ClojureScript vs Optimization

• Google Closure Compiler

• heavily tested

• optimizes Gmail

• “just works”



Stateful DOM



Stateful DOM
• Dynamic apps need to modify the DOM

• DOM and your data get out of sync



JavaScript vs DOM
• JavaScript sprinkles

• Just use JS for making small improvements to a static page

• Angular/Ember

• Make a new HTML that is responsive to changes to state

• React

• Build new components that manage their view state

• Vue



ClojureScript vs DOM
• React

• Re-frame, Om, Rum — Basically just the Virtual DOM

• Manage app state in one place, View in another

• Really fast

• Very functional

• Hoplon

• Spreadsheet cells for changes



Application State Management



Application State
• Applications have a lot data to keep track of

• It’s hard to tell what has changed and when

• It’s hard to keep in synch with the server



JavaScript vs State
• Mutable objects and variables

• Component state

• Redux

• Immutable.js

• GraphQL

• Falcor



ClojureScript vs State
• One mutable variable with immutable data

• Re-frame + Om Next

• Redux was inspired by these

• Manage their own “databases”

• Encourage a “pull model” with the server



Build tool fatigue



Build tool fatigue
• There’s a lot of stuff a modern project needs

• linting 

• transpiling

• dependency management

• bundling



JavaScript vs Tools
• Many options

• Webpack

• Grunt

• Gulp

• Browserify

• NPM

• Rollup

• These are just the bundlers!!

• No clear winner

• Broken promises

• Bad documentation



ClojureScript vs Tools
• Leiningen

• Configuration / declarative

• Plugins

• Boot

• Procedural / task-based

• Libraries



Development flow



Development flow
• Web development is very visual

• We want to see changes right away



JavaScript vs Flow
• “Plain” flow

• Save changes to JS + CSS.

• Watcher recompiles on change.

• Reload the browser.

• Click around to where you were in your app.

• Hot Module Reloading

• Save changes to JS + CSS.

• Watcher recompiles on change.

• Watcher sends new code to browser.

• Works for some applications.



ClojureScript vs Flow
• Figwheel

• Compiles ClojureScript and sends it to browser

• See changes in less than a second

• Application state is untouched



Extra slides



Embrace the host



Built-in



Platforms



React



Other Goodies



Module Systems



core.async



EDN



Google Closure Compiler



Eric Normand
Follow Eric on:

Eric Normand @EricNormand

eric@lispcast.comlispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com
https://www.linkedin.com/in/eric-normand/
https://lispcast.com/
https://lispcast.com/
https://twitter.com/ericnormand
mailto:eric@lispcast.com

