Domain Modeling

How rich meaning improves your code

Eric Normand - Houston Functional Programmers - January 18, 2023

Software Design has failed

“| began to notice, by the late 70s,
some weaknesses Iin our work with
patterns and the pattern languages.

“By the late 70s, | had begun to see
many buildings that were being made
In the world when the patterns were
applied. | was not happy with what |
saw. It seemed to me that we had
fallen far short of the mark that | had
Intended. But, | also realized that
whatever was going wrong wasn't
going to be corrected by writing a few
more patterns or making the patterns
a little bit better.”

https://www.patternlanguage.com/archive/ieee.html

Christopher Alexander

Package org.springframework.aop.framework

Class AbstractSingletonProxyFactoryBean

java.lang.Object
org.springframework.aop.framework.ProxyConfig
org.springframework.aop.framework.AbstractSingletonProxyFactoryBean

All Implemented Interfaces:

Serializable ,Aware, BeanClassLoaderAware, FactoryBean<Object >,InitializingBean

Direct Known Subclasses:

CacheProxyFactoryBean, TransactionProxyFactoryBean

public abstract class AbstractSingletonProxyFactoryBean
extends ProxyConfig

implements FactoryBean<Object >, BeanClassLoaderAware, InitializingBean

Convenient superclass for FactoryBean types that produce singleton-scoped proxy objects.

Manages pre- and post-interceptors (references, rather than interceptor names, as in ProxyFactoryBean) and provides consistent interface management.

Too much coupling
Too many classes
Code smells

e Add indirection
e Use decorator pattern
e Refactor!

e Add indirection
e Use decorator pattern
e Refactor!

Sure, it’s less messy. But what about what it represents?

* Does the indirection correspond to anything in the real world?

* Does the decorator encode the possible states?

* Does the refactored code have a structure that better
encodes the information about the world?

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

App functionality

Domain model

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

App functionality

Domain model

II*IIII
]

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

App functionality Changes frequently

II*IIII
]

Domain model Changes rarely

Teaching Challenges

g Size R {:size :small | :medium | :large
:roast :light | :medium | :dark}
Roast
. Conceptual .
Domain P Encoding

Model

g Size X {:size :small | :medium | :large
:roast :light | :medium | :dark}
Roast
. Conceptual .
Domain Encodin
Model g

\ -

* Interfaces - isA

* classes - entities

* Methods - getters, setters, “behavior”
> ¢ Enum

* Fields - hasA

e Strings

* Integers

Language Usage Coding

* Interfaces - isA

* classes - entities

* Methods - getters, setters, “behavior”
> ¢ Enum

* Fields - hasA

e Strings

* Integers

Language Usage Coding

~_ T~

#\ izi

Roast
Domain

Conceptual
Model

App

 Interfaces
e classes

* Methods
* Enum .
/ e Fields EnCOdlng
e Strings
* Integers
Usage

Language

11 B
\ Size
Roast
Domain
Conceptual
Model
App
* |nterfaces
e classes
e Methods
e Enum]
/ e Fields =nooding
e Strings
* Integers
Usage

Language \

Level 1: Data modeling

Goal: Encode and decode our conceptual model

Focus: Relationships among values

Level 2: Operation modeling

Goal: Support known use cases

Focus: Function signatures

Level 3: Algebraic modeling

Goal: Support unforeseen use cases

Focus: Composition of operations

Focus: Relationships among values

Level 1: Data modeling

Small Dark
Medium Medium

Large Light

Focus: Relationships among values

Level 1: Data modeling

Small Dark
é Medium Mediumg
Large Light

Focus: Relationships among values

Level 1: Data modeling

Small Dark
é Medium Mediumg
Large Light

Focus: Relationships among values

Level 1: Data modeling

Focus: Relationships among values

Level 1: Data modeling

Focus: Relationships among values

Level 1: Data modeling

Small
Medium Choose one among many. Small OR medium OR large
Large

Dark
Medium
Light

"

Size Roast

Focus: Relationships among values

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Choose one among many.

Small OR medium OR large

Alternative

Focus: Relationships among values

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Choose one among many.

Choose one among many.

Small OR medium OR large

Dark OR medium OR light

Alternative

Alternative

Focus: Relationships among values

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Choose one among many.

Choose one among many.

Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Alternative

Alternative

Focus: Relationships among values

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Choose one among many.

Choose one among many.

Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Size AND Roast

Alternative

Alternative

Focus: Relationships among values

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Choose one among many.

Choose one among many.

Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Size AND Roast

Alternative

Alternative

Combination

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Clojure

Small Keywords

é Mediurm Alternative Functions
Large Strings
Maps

Dark Vectors

é Medium Alternative Protocols
Light Records

TN .
Size Roast Combination

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Clojure
small . Keywords
_ " :small, :medium, :large
Medium Alternative etions
Large Strings
Maps
Dark Vectors
Medium Alternative Protocols
Light Records
/\

Size Roast Combination

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Clojure

:small, :medium, :large Keywords

Alternative

Functions
Strings
Maps
Vectors

Alternative :dark, :medium, :light Protocols

Records

Combination

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Clojure

A

:small, :medium, :large Keywords

Alternative

Functions
Strings
Maps
Vectors

Alternative :dark, :medium, :light Protocols

Records

COmb|nat|On {:size :small, :roast :dark}

Goal: Encode and decode our conceptual model

Level 1: Data modeling

Small

é Medium
Large
Dark

é Medium
Light

"

Size Roast

Alternative

Alternative

Combination

Enum Size

small
medium
large

Enum Roast

dark
medium
light

Class Coffee

size /

roast —

NEVZ]

Interfaces
Classes
Strings

Numbers

Methods

Enum

Data modeling elements

Atomic Composed
 |dentifier » Alternative

* Count Combination
* Measure * Collection
 Date J\YF-Te]ellgle

e Text e Optional

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut
Soy milk

Cream

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut
Soy milk

G

Cream

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut Choose one among many. Small OR medium OR large Alternative
Soy milk

G

Cream

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut
Soy milk

G

Cream

"

Add-in Add-in Add-in

Choose one among many.

Choose 0-3.

Small OR medium OR large

Almond AND espresso

Alternative

Collection

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut
Soy milk

G

Cream

"

Add-in Add-in Add-in

Y~ N T N

Size Roast Add-ins

Choose one among many.

Choose 0-3.

Choose one of each.

Small OR medium OR large

Almond AND espresso

Size AND Roast

Alternative

Collection

Combination

Focus: Relationships among values

Level 1: Data modeling

Espresso shot
Almond
Hazelnut
Soy milk

G

Cream

"

Add-in Add-in Add-in

Y~ N T N

Size Roast Add-ins

Alternative

Collection

Combination

:espresso, :almond,
:hazelnut, :soy, :cream

[:almond :soVy]

{:s1ze :small,
:roast :dark,
:add-ins [:almond :soy]}

Clojure

Keywords

Functions
Strings
Maps
/_ Vectors

Protocols

Records

Espresso shot
Almond
Hazelnut
Soy milk

Cream

5 Add-Ins

How many combinations of add-ins do we have?
(up to 3)

Espresso shot
Almond
Hazelnut
Soy milk

Cream

5 Add-Ins

How many combinations of add-ins do we have?
(up to 3)

Espresso shot

Almond . . - N
Hazeinu 5 Add-ins I(IIJOV\’[IOr%?ny combinations of add-ins do we have"
Soy milk p

Cream

Espresso shot

Almond . . - N
Hazeinu 5 Add-ins I(IIJOV\’[/Or%?ny combinations of add-ins do we have"
Soy milk p

Cream
[] 1
EY 5

@bl oOX5=25

Espresso shot

Almond

How many combinations of add-ins do we have?

Hazelnut 5 Add-”‘]S

Soy milk (up tO 3)
Cream

[] 1

[a] 5

2 v 5x5=25

[a b c] 5x5x5=125

Espresso shot

Almond

How many combinations of add-ins do we have?

Hazelnut 5 Add-”‘]S
Soy milk (up tO 3)
Cream
[] 1
[a] 5
156 combinations
2 v 5x5=25

[a b c] 5x5x5=125

156 combinations

but we counted some twice (or thrice)

[:almond :soy] [:soy :almond]

[:almond :soy :so0OVy] [:soy :almond :soy] [:soy :soy :almond]

Only 56 unigue combinations

What do we do?

¢ L|Ve W|th |t [:soy :almond :s0V]
° Flnd a new representatlon #O0rderedList [:almond :soy :soy]

* Change the conceptual model

» EX: Collection => Mapping of identifiers to counts (isoy 2 :almond 1}

e Revisit the domain

#{:almond :soy}

 EXx: No duplicates allowed

Class Coffee
Int size

Int roast

Int espresso
Int soy

Int almond
Int hazelnut
Int cream

 Number of states in encoding vs in
conceptual model vs In reality

 Complexity of normalize function

 Complexity of validate function

Focus: Functional Signatures

Level 2: Operation model

Are two coffees equal?

(defn coffee= [coffee—-a coffee-b]) ;=> boolean

How many espresso shots does a coffee have?

(defn how-many? [coffee add-1in]) ;=> natural-number

Maximum number of add-ins.

(defn within-1imit? [coffee min max]) ;=> boolean

Add add-in

(defn add [coffee add-in]) ;=> coffee

Remove add-in

(defn remove [coffee add-in]) ;=> coffee

{:s1ze :small :roast :dark {:s1ze :small :roast :dark

VeCtor :add-ins [:soy :almond :soy]} Map :add—-1ns {:soy 2 :almond 1}}

{:s1ze :small :roast :dark {:s1ze :small :roast :dark

VeCtOr :add-ins [:soy :almond :soy]} Map :add—-1ns {:soy 2 :almond 1}}

(defn coffee= [coffee—-a coffee-b] ;=> boolean (defn coffee= [coffee—a coffee-b] ;=> boolean
(= coffee-a coffee-b)) (= coffee-a coffee-b))

{:size :small :roast :dark

VeCtOr :add—-1ns [:soy :almond :soy]}

(defn coffee= [coffee—-a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

{:size :small :roast :dark

Map :add—-1ns {:soy 2 :almond 1}}

(defn coffee= [coffee—a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how—-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

{:size :small :roast :dark

VeCtOr :add—-1ns [:soy :almond :soy]}

(defn coffee= [coffee—-a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

(defn within-1limit? [coffee min max] ;=> boolean
(>= min (count (:add-ins coffee)) max))

{:size :small :roast :dark

Map :add—-1ns {:soy 2 :almond 1}}

(defn coffee= [coffee—a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how—-many? [coffee add-in] ;=> natural-number
(get (:add-1ns coffee) add-in 0)))

(defn within-1limit? [coffee min max] ;=> boolean
(>> min (reduce + 0 (vals (:add-ins coffee))) max))

{:size :small :roast :dark

VeCtOr :add—-1ns [:soy :almond :soy]}

(defn coffee= [coffee—-a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

(defn within-1limit? [coffee min max] ;=> boolean
(>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
(update coffee :add-i1ins (comp vec sort conj) add-in))

{:size :small :roast :dark

Map :add—-1ns {:soy 2 :almond 1}}

(defn coffee= [coffee—a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how—-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

(defn within-1limit? [coffee min max] ;=> boolean
(>>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
(update—-1n coffee [:add-1ns add-in] (fnil 1nc 0)))

{:s1ze :small :roast :dark

VeCtOr :add—-1ns [:soy :almond :soy]}

(defn coffee= [coffee—-a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

(defn within-1limit? [coffee min max] ;=> boolean
(>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
(update coffee :add-i1ins (comp vec sort conj) add-in))

(defn remove [coffee add-in] ;=> coffee
(assoc coffee :add-ins
(Loop [add-1ins add-ins acc []]
(cond
(empty? add-1ins)
acc
(= add-1n (first add-ins))
(lnto acc (rest add-ins))
:else

(recur (rest add-ins) (conj acc (first add-ins))))))))

{:size :small :roast :dark

Map :add—-1ns {:soy 2 :almond 1}}

(defn coffee= [coffee—a coffee-b] ;=> boolean
(= coffee—-a coffee-b))

(defn how—-many? [coffee add-in] ;=> natural-number
(count (filter #{add-in} (:add-ins coffee))))

(defn within-1limit? [coffee min max] ;=> boolean
(>>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
(update—-1n coffee [:add-1ns add-in] (fnil 1nc 0)))

(defn remove [coffee add-in] ;=> coffee
(1f (<= 1 (get—-1n coffee [:add-1ns add-in] 0))
(update coffee :add-i1ins dissoc add-in)
(update—-1n coffee [:add-i1ins add-in] dec)))

Vector

(defn

(defn

(defn

(defn

(defn

{:size :small :roast :dark

:add—-1ns [:soy :almond :soy]}
coffee= [coffee—-a coffee-b]) ,;=> boolean
how-many? [coffee add-in]) ;=> natural-number
within-1limit? [coffee min max]) ;=> boolean

add [coffee add-in]) ;=> coffee

remove [coffee add-in]) ;=> coffee

\ETe

(defn

(defn

(defn

(defn

(defn

{:size :small :roast :dark
:add—-1ns {:soy 2 :almond 1}}

coffee= [coffee—-a coffee-b]) ,;=> boolean
how-many? [coffee add-in]) ;=> natural-number
within-1limit? [coffee min max]) ;=> boolean

add [coffee add-in]) ;=> coffee

remove [coffee add-in]) ;=> coffee

Vector

(defn

(defn

(defn

(defn

(defn

coffee=

how—-many?

within-1imit?

add

INSIIIOAVAS

[coffee add-1in])

:roast :dark
:almond :sovy]}

{:si1ize :small
:add—-1ns [:soy

[coffee—-a coffee-b]) ,;=> boolean

[coffee add-1n]) ;=> natural-number

[coffee min max]) ;=> boolean

;=> coffee

[coffee add-in])

\

Linear search??7??

;=> coffee

Linear search??7??

Linear sum????

\ETe

(defn

(defn

(defn

(defn

(defn

:roast :dark
:almond 11} }

{:si1ize :small
:add-1ns {:soy 2

coffee= [coffee—-a coffee-b]) ,;=> boolean

how-many? [coffee add-in]) ;=> natural-number

within-1limit? [coffee min max]) ;=> boolean

add [coffee add-in]) ;=> coffee

remove [coffee add-in]) ;=> coffee

Total functions

Level 2: Operation modeling

A total function is a function that is defined for all valid arguments.

"ee add-1n]) ;=> coffee

(defn remove |[CO

(remove {:s1ze :small :roast :medium :add-ins []} :soVy)
3 options:

1. Restrict the arguments

2. Augment the return value

3. Change the meaning

1. Restrict the arguments

Making a function total

—

"ee add-1n]) ;=> coffee

(defn remove [cCO

(remove {:s1ze :small :roast :medium :add-ins []} :soVy)

1. Restrict the arguments

Making a function total

(defn remove [coffee add-in] ;=> coffee
{:pre [(pos? (how—-many? coffee add-in))]})
(remove {:s1ze :small :roast :medium :add-ins []} :s0V)

 Make some combination of arguments invalid.
* Force the caller to check the arguments before calling.

* By changing the definition of “valid arguments”, | have made the function
total.

2. Augment the return

Making a function total

—

ee add-in]) ;=> coffee | nil

(defn remove [cCO

(remove {:s1ze :small :roast :medilium :add-ins []} :soVy)

 Augment the return value with an extra state indicating failure.

* Force the caller to deal with the return value after calling.

2. Change the meaning

Making a function total

—

"ee add-1n]) ;=> coffee

(defn remove [cCO

(remove {:s1ze :small :roast :medilium :add-ins []} :soVy)
 Change meaning to remove If it exists.

« Some combinations of arguments return an unchanged coffee.

 All checks are contained in the function.

HTTP Client Example

Total functions

 With HTTP, you will get errors (timeouts, 500s, etc).
« How to make a request function total?

1. Restrict the arguments? NO

2. Augment the return? YES

3. Change the meaning? NO

HTTP Client Example

Total functions

{:status :success
:value {..JSON..}}

{:status :error

:code 500
:message

(defn value—-or—error

“Server error”}

(case (:status response)

. SUCCESS

.Y ror

(throw

e

(ex—1n:

 response |

(:value response)

(:message response)

response))))

Precise set of meanings
Complete set of meanings

Minimal set of meanings (nothing
unnecessary).

Totality of functions

Possibility/complexity of your
functions (revisit data model)

Focus: Composition of functions

Level 3: Algebraic modeling

(let [coffee {:si1ize :small :roast :light :add-ins []}]
(assert (= coffee
(—=> coffee
(add . espresso)

(remove :espresso)))))

Focus: Composition of functions

Level 3: Algebraic modeling

(let [coffee {:size :small :roast :light :add-ins []}
‘add—-1n (random—-nth
| tespresso :soy :almond :hazelnut :cream]) |
(assert (= coffee

ﬁﬁ

(—> coffee
(add add—-1n)
(remove add-in)))))

Focus: Composition of functions

Level 3: Algebraic modeling

(let [coffee {:s1ze (random—-size)
:roast (random—-roast)
:add—-1ns (random—-add-ins) }
add—-1n (random—-nth
| tespresso :soy :almond :hazelnut :cream])]

(assert (= coffee
(=> coffee
(add add—-1in)
(remove add-in)))))

Focus: Composition of functions

Level 3: Algebraic modeling

(let [coffee {:s1ze (random—-size)
:roast (random—-roast)
:add—-1ns (random—-add-ins) !}
add—-1ns (random—add-1ins)

B

coffee-with (reduce add coffee add—1ns)
"ee—-wlth add-1ns) |

coffee-without (reduce remove CO

—

"ee—wlthout)))

(assert (= coffee co

Focus: Composition of functions

Level 3: Algebraic modeling

(let [coffee {:s1ze
:roast
:add—-1ns

add—-1ns

add-1ns’

o~

(assert (=

CO:

(shut

coffee-with

coffee—-without

fee coO

—

(random—-size)
(random—-roast)

(random—-add—-ins) }
(random—add—-1ins)

"le add-1ins)

(reduce add CO
(reduce remove cCo:

ee—-without)))

—

ee add—-1ins)

B

fee-with add-ins

") |

Focus: Composition of functions

Level 3: Algebraic modeling

Relationship between add, remove, and how-many?

(< (how-many? coffee add-in)
(how—many? (add coffee add-in) add-in))
(>= (how-many? coffee add-in)
(how—-many? (remove coffee add-in) add-in))

Relationship of add with 1tself?

(= (=> coffee (add a) (add b))
(-=> coffee (add b) (add a)))

Relationship of remove with 1tself?

(= (=> coffee (remove a) (remove b))
(-> coffee (remove b) (remove a)))

