
Eric Normand - Houston Functional Programmers - January 18, 2023

Domain Modeling
How rich meaning improves your code

Software Design has failed

“I began to notice, by the late 70s,
some weaknesses in our work with
patterns and the pattern languages.

“By the late 70s, I had begun to see
many buildings that were being made
in the world when the patterns were
applied. I was not happy with what I
saw. It seemed to me that we had
fallen far short of the mark that I had
intended. But, I also realized that
whatever was going wrong wasn't
going to be corrected by writing a few
more patterns or making the patterns
a little bit better.”

https://www.patternlanguage.com/archive/ieee.html

Christopher Alexander

• Too much coupling

• Too many classes

• Code smells

• …

• Add indirection

• Use decorator pattern

• Refactor!

• Add indirection

• Use decorator pattern

• Refactor!

Sure, it’s less messy. But what about what it represents?

• Does the indirection correspond to anything in the real world?

• Does the decorator encode the possible states?

• Does the refactored code have a structure that better 

 encodes the information about the world?

Domain model

App functionality

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

Domain model

App functionality

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

Domain model

App functionality

Domain modeling is a set of skills and practices
we apply to encode our understanding of a
domain separately from the software’s explicit
functionality.

Changes frequently

Changes rarely

Teaching Challenges

Coffee

Domain

Size

Roast

{:size :small | :medium | :large
 :roast :light | :medium | :dark}

Conceptual

Model Encoding

Coffee

Domain

Size

Roast

{:size :small | :medium | :large
 :roast :light | :medium | :dark}

Conceptual

Model Encoding

Java

• Interfaces - isA

• classes - entities

• Methods - getters, setters, “behavior”

• Enum

• Fields - hasA

• Strings

• Integers

App

Language Usage Coding

Java

• Interfaces - isA

• classes - entities

• Methods - getters, setters, “behavior”

• Enum

• Fields - hasA

• Strings

• Integers

App

Language Usage Coding

• Interfaces

• classes

• Methods

• Enum

• Fields

• Strings

• Integers

App

Java

Language

Usage

Coffee

Domain

Size

Roast

Conceptual

Model

Encoding

• Interfaces

• classes

• Methods

• Enum

• Fields

• Strings

• Integers

App

Java

Language

Usage

Coffee

Domain

Size

Roast

Conceptual

Model

Encoding

Level 1: Data modeling
Goal: Encode and decode our conceptual model

Focus: Relationships among values

Level 2: Operation modeling
Goal: Support known use cases

Focus: Function signatures

Level 3: Algebraic modeling
Goal: Support unforeseen use cases

Focus: Composition of operations

Focus: Relationships among values
Level 1: Data modeling

Small

Medium

Large

Dark

Medium

Light

Focus: Relationships among values
Level 1: Data modeling

Small

Medium

Large

Dark

Medium

Light

Focus: Relationships among values
Level 1: Data modeling

Small

Medium

Large

Dark

Medium

Light

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Size Roast

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Size Roast

Small OR medium OR large

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Size Roast

Small OR medium OR large Alternative

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Choose one among many.

Size Roast

Small OR medium OR large

Dark OR medium OR light

Alternative

Alternative

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Choose one among many.

Size Roast Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Alternative

Alternative

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Choose one among many.

Size Roast Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Size AND Roast

Alternative

Alternative

Focus: Relationships among values
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Choose one among many.

Choose one among many.

Size Roast Choose one of each.

Small OR medium OR large

Dark OR medium OR light

Size AND Roast

Alternative

Alternative

Combination

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Alternative

Alternative

Combination

Clojure
Keywords

Functions

Strings

Maps

Vectors

Protocols

Records

. . .

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Alternative

Alternative

Combination

Clojure
Keywords

Functions

Strings

Maps

Vectors

Protocols

Records

. . .

:small, :medium, :large

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Alternative

Alternative

Combination

Clojure
Keywords

Functions

Strings

Maps

Vectors

Protocols

Records

. . .

:small, :medium, :large

:dark, :medium, :light

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Alternative

Alternative

Combination

Clojure
Keywords

Functions

Strings

Maps

Vectors

Protocols

Records

. . .

:small, :medium, :large

:dark, :medium, :light

{:size :small, :roast :dark}

Goal: Encode and decode our conceptual model
Level 1: Data modeling

Dark

Medium

Light

Small

Medium

Large

Size Roast

Alternative

Alternative

Combination

Java
Interfaces

Classes

Strings

Numbers

Methods

Enum
. . .

Enum Size

small 
medium 
large

Enum Roast

dark 
medium 
light

Class Coffee

size 
roast

Data modeling elements

Atomic

• Identifier

• Count

• Measure

• Date

• Text

Composed

• Alternative

• Combination

• Collection

• Mapping

• Optional

Focus: Relationships among values
Level 1: Data modeling

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Focus: Relationships among values
Level 1: Data modeling

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Focus: Relationships among values
Level 1: Data modeling

Choose one among many. Small OR medium OR large Alternative

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Focus: Relationships among values
Level 1: Data modeling

Choose one among many. Small OR medium OR large Alternative

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Add-in Add-in Add-in Choose 0-3. Almond AND espresso Collection

Focus: Relationships among values
Level 1: Data modeling

Choose one among many.

Size Roast Choose one of each.

Small OR medium OR large

Size AND Roast

Alternative

Combination

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Add-in Add-in Add-in Choose 0-3. Almond AND espresso Collection

Add-ins

Focus: Relationships among values
Level 1: Data modeling

Size Roast

Alternative

Combination

Espresso shot

Almond

Hazelnut

Soy milk

Cream

Add-in Add-in Add-in Collection

Add-ins

Clojure
Keywords

Functions

Strings

Maps

Vectors

Protocols

Records

. . .

:espresso, :almond,
:hazelnut, :soy, :cream

[:almond :soy]

{:size :small,
 :roast :dark,
 :add-ins [:almond :soy]}

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

[]

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

1

[]

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

[a]

1

5

[]

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

[a]

1

[a b]

5

5x5=25

[]

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

[a]

1

[a b]

5

5x5=25

[a b c] 5x5x5=125

[]

Espresso shot

Almond

Hazelnut

Soy milk

Cream

5 Add-ins How many combinations of add-ins do we have? 
(up to 3)

[a]

1

[a b]

5

5x5=25

[a b c] 5x5x5=125

156 combinations

156 combinations

but we counted some twice (or thrice)

[:almond :soy] [:soy :almond]

[:almond :soy :soy] [:soy :almond :soy] [:soy :soy :almond]

Only 56 unique combinations

What do we do?

• Live with it 

• Find a new representation 

• Change the conceptual model

• Ex: Collection => Mapping of identifiers to counts 

• Revisit the domain

• Ex: No duplicates allowed

[:soy :almond :soy]

#OrderedList [:almond :soy :soy]

{:soy 2 :almond 1}

#{:almond :soy}

Class Coffee

Int size

Int roast

Int espresso

Int soy 
Int almond

Int hazelnut 
Int cream

• Number of states in encoding vs in
conceptual model vs in reality

• Complexity of normalize function

• Complexity of validate function

Focus: Functional Signatures
Level 2: Operation model

Are two coffees equal?

How many espresso shots does a coffee have?

Maximum number of add-ins.

(defn coffee= [coffee-a coffee-b]) ;=> boolean

(defn how-many? [coffee add-in]) ;=> natural-number

(defn within-limit? [coffee min max]) ;=> boolean

Add add-in

(defn add [coffee add-in]) ;=> coffee

Remove add-in

(defn remove [coffee add-in]) ;=> coffee

Vector {:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

Vector

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

Vector

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

Vector

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (count (:add-ins coffee)) max))

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (get (:add-ins coffee) add-in 0)))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (reduce + 0 (vals (:add-ins coffee))) max))

Vector

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (count (:add-ins coffee)) max))

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
 (update coffee :add-ins (comp vec sort conj) add-in))

(defn add [coffee add-in] ;=> coffee
 (update-in coffee [:add-ins add-in] (fnil inc 0)))

Vector

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (count (:add-ins coffee)) max))

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn coffee= [coffee-a coffee-b] ;=> boolean
 (= coffee-a coffee-b))

(defn how-many? [coffee add-in] ;=> natural-number
 (count (filter #{add-in} (:add-ins coffee))))

(defn within-limit? [coffee min max] ;=> boolean
 (>= min (count (:add-ins coffee)) max))

(defn add [coffee add-in] ;=> coffee
 (update coffee :add-ins (comp vec sort conj) add-in))

(defn remove [coffee add-in] ;=> coffee
 (assoc coffee :add-ins
 (loop [add-ins add-ins acc []]
 (cond
 (empty? add-ins)
 acc
 (= add-in (first add-ins))
 (into acc (rest add-ins))
 :else
 (recur (rest add-ins) (conj acc (first add-ins))))))))

(defn add [coffee add-in] ;=> coffee
 (update-in coffee [:add-ins add-in] (fnil inc 0)))

(defn remove [coffee add-in] ;=> coffee
 (if (<= 1 (get-in coffee [:add-ins add-in] 0))
 (update coffee :add-ins dissoc add-in)
 (update-in coffee [:add-ins add-in] dec)))

Vector

(defn coffee= [coffee-a coffee-b]) ;=> boolean

(defn how-many? [coffee add-in]) ;=> natural-number

(defn within-limit? [coffee min max]) ;=> boolean

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn add [coffee add-in]) ;=> coffee

(defn remove [coffee add-in]) ;=> coffee

(defn coffee= [coffee-a coffee-b]) ;=> boolean

(defn how-many? [coffee add-in]) ;=> natural-number

(defn within-limit? [coffee min max]) ;=> boolean

(defn add [coffee add-in]) ;=> coffee

(defn remove [coffee add-in]) ;=> coffee

Vector

(defn coffee= [coffee-a coffee-b]) ;=> boolean

(defn how-many? [coffee add-in]) ;=> natural-number

(defn within-limit? [coffee min max]) ;=> boolean

{:size :small :roast :dark
 :add-ins [:soy :almond :soy]} Map {:size :small :roast :dark

 :add-ins {:soy 2 :almond 1}}

(defn add [coffee add-in]) ;=> coffee

(defn remove [coffee add-in]) ;=> coffee

(defn coffee= [coffee-a coffee-b]) ;=> boolean

(defn how-many? [coffee add-in]) ;=> natural-number

(defn within-limit? [coffee min max]) ;=> boolean

(defn add [coffee add-in]) ;=> coffee

(defn remove [coffee add-in]) ;=> coffee

Linear search????

Linear search????

Linear sum????

Total functions
Level 2: Operation modeling

A total function is a function that is defined for all valid arguments.

(defn remove [coffee add-in]) ;=> coffee

(remove {:size :small :roast :medium :add-ins []} :soy)

3 options:

1. Restrict the arguments

2. Augment the return value

3. Change the meaning

1. Restrict the arguments
Making a function total

(defn remove [coffee add-in]) ;=> coffee

(remove {:size :small :roast :medium :add-ins []} :soy)❌

1. Restrict the arguments
Making a function total

(defn remove [coffee add-in] ;=> coffee
 {:pre [(pos? (how-many? coffee add-in))]})

(remove {:size :small :roast :medium :add-ins []} :soy)❌

• Make some combination of arguments invalid.

• Force the caller to check the arguments before calling.

• By changing the definition of “valid arguments”, I have made the function
total.

2. Augment the return
Making a function total

(defn remove [coffee add-in]) ;=> coffee | nil

(remove {:size :small :roast :medium :add-ins []} :soy)

• Augment the return value with an extra state indicating failure.

• Force the caller to deal with the return value after calling.

2. Change the meaning
Making a function total

(defn remove [coffee add-in]) ;=> coffee

(remove {:size :small :roast :medium :add-ins []} :soy)

• Change meaning to remove if it exists.

• Some combinations of arguments return an unchanged coffee.

• All checks are contained in the function.

HTTP Client Example
Total functions

• With HTTP, you will get errors (timeouts, 500s, etc).

• How to make a request function total?

1. Restrict the arguments? NO

2. Augment the return? YES

3. Change the meaning? NO

HTTP Client Example
Total functions

{:status :success
 :value {..JSON..}}

|

{:status :error
 :code 500
 :message “Server error”}

(defn value-or-error [response]
 (case (:status response)
 :success (:value response)
 :error (throw (ex-info (:message response) response))))

• Precise set of meanings

• Complete set of meanings

• Minimal set of meanings (nothing
unnecessary).

• Totality of functions

• Possibility/complexity of your
functions (revisit data model)

Focus: Composition of functions
Level 3: Algebraic modeling

(let [coffee {:size :small :roast :light :add-ins []}]

 (assert (= coffee
 (-> coffee
 (add :espresso)
 (remove :espresso)))))

Focus: Composition of functions
Level 3: Algebraic modeling

(let [coffee {:size :small :roast :light :add-ins []}
 [add-in (random-nth
 [:espresso :soy :almond :hazelnut :cream])]

 (assert (= coffee
 (-> coffee
 (add add-in)
 (remove add-in)))))

Focus: Composition of functions
Level 3: Algebraic modeling

(let [coffee {:size (random-size)
 :roast (random-roast)
 :add-ins (random-add-ins)}
 add-in (random-nth
 [:espresso :soy :almond :hazelnut :cream])]

 (assert (= coffee
 (-> coffee
 (add add-in)
 (remove add-in)))))

Focus: Composition of functions
Level 3: Algebraic modeling

(let [coffee {:size (random-size)
 :roast (random-roast)
 :add-ins (random-add-ins)}
 add-ins (random-add-ins)

 coffee-with (reduce add coffee add-ins)
 coffee-without (reduce remove coffee-with add-ins)]

 (assert (= coffee coffee-without)))

Focus: Composition of functions
Level 3: Algebraic modeling

(let [coffee {:size (random-size)
 :roast (random-roast)
 :add-ins (random-add-ins)}
 add-ins (random-add-ins)
 add-ins’ (shuffle add-ins)

 coffee-with (reduce add coffee add-ins)
 coffee-without (reduce remove coffee-with add-ins’)]

 (assert (= coffee coffee-without)))

Focus: Composition of functions
Level 3: Algebraic modeling

Relationship between add, remove, and how-many?

(< (how-many? coffee add-in)
 (how-many? (add coffee add-in) add-in))
(>= (how-many? coffee add-in)
 (how-many? (remove coffee add-in) add-in))

Relationship of add with itself?

(= (-> coffee (add a) (add b))
 (-> coffee (add b) (add a)))

Relationship of remove with itself?

(= (-> coffee (remove a) (remove b))
 (-> coffee (remove b) (remove a)))

