
Eric Normand - Houston Functional Programming User Group

Two and a half more Domain
Modeling Lenses

ericnormand.me/gs

ericnormand.me/gsm TSSIMPLICITY

http://ericnormand.me/gs
http://ericnormand.me/gsm

Software design is subtle

Good information → good decisions → good design

• Data

• Operations

• Composition

• Time

• Domain

• Scope

• Platform

• Volatility

• Runnable specifications

• Data

• Operations

• Composition

• Time

• Domain

• Scope

• Platform

• Volatility

• Runnable specifications

Talk about other talk

https://ericnormand.me/speaking/func-prog-sweden-2023

Better Software Design with Domain Modeling

• Data

• Operations

• Composition

• Time

• Domain

• Scope

• Platform

• Volatility

• Runnable specifications

Four More Domain Modeling Lenses

https://ericnormand.me/speaking/houston-fpug-2024

• Data

• Operations

• Composition

• Time

• Domain

• Scope

• Platform

• Volatility

• Runnable specifications

• Data

• Operations

• Composition

• Time

• Domain

• Scope

• Platform

• Volatility

• Runnable specifications

Raw Burnt Charcoal

Soy milk Espresso

AlmondHazelnut Chocolate

Super Mega Galactic

{
 “size”: “super”,

 “roast”: “burnt”,

 “add-ins”: {“espresso” : 1,
 “soy” : 2}
}

Runnable specifications

Domain Code

abstract encode

evaluate
new look

Model

model in code

sp
ec

ific
ati

on
/im

ple
men

tat
ion

feedback

Model in code

What is modeling?

Fashion model

Artist model

Architect model

Physics model

Why do we model?

Model to learn

Model to communicate

Model to record data and relationships

Model to learn

• Reduce the number of variables/constrain the problem

• Build as little as possible to answer the question

• Defer decisions that don’t answer question

• Don’t implement

• Implement with a stub

• Answer the hard questions first

Model to communicate
communicating to programmers, stakeholders, and the computer

• Try your model on use cases

• Run your model

• Set up scenarios

• Visualize

Model to record data and relationships

• This is the goal

• The other steps lead up to this

• Testing

Separate implementation from
specification

Specification

Implementation

English description UML diagrams

code code code

code

runnable specifications

type names

+

function signatures

type definition

+

function body

type Coffee;
type AddIn;
type AddInCollection;

function addIns(coffee) //=> AddInCollection
function addAddIn(coffee, addIn) //=> Coffee

Specification

Implementation type Coffee = {
 …
 addIns: AddInCollection;
};

type AddIn = Soy | Espresso | Hazelnut | …;

type AddInCollection = { [addIn: string]: number; };

function addAddIn(coffee, addIn) { //=> Coffee
 return update(coffee, “addIns”, append, addIn);
}

denotational semantics

operational semantics

function factorial(n) {
 if(n === 0)
 return 1;
 else
 return n * factorial(n - 1);
}

function factorial(n) {
 let ret = 1;
 for (let i = 1; i <= n; i++)
 ret *= i;
 return ret;
}

Specification

Implementation

function definition

function implementation

function coffeePrice(coffee) { //=> number
 return sizePrice(size(coffee)) +
 addInCollectionPrice(addIns(coffee));
}

function coffeePrice(coffee) { //=> number
 let price = sizePrice(coffee.size));
 for (const [addIn, quantity] of coffee.addIns)
 price += addInPrice(addIn) * quantity;
 return price;
}

Specification

Implementation

Assumes existence of four other domain functions

• size()

• sizePrice()

• addIns()

• addInCollectionPrice()

Assumes lots:

• sizePrice()

• structure of coffee (coffee.size)

• structure of addIns (object)

• addInPrice()

• algorithm for calculating the price

Frequent and rich feedback

Domain Code

abstract encode

evaluate
new look

Model

Making decisions is better with feedback

• Stubs

• Work in-memory

• Work iteratively

• less -> more correct

• Work incrementally

• less -> more detail

Time

Every sophisticated model
includes at least one notion of time

Different notions of time
(not comprehensive list, nor are they mutually exclusive)

• Calendar date/time

• Order (x happens before y)

• As of

• History (audit)

• Future

• Counterfactual

The naive model updates in
place (throwing away history)

Two models of history

• History of states

• History of mutations

History of states

{
 size: “mega”,
 roast: “burnt”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 espresso: 1}
}

time

History of states

{
 size: “mega”,
 roast: “burnt”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 espresso: 1}
}

time

History of states

{
 size: “mega”,
 roast: “burnt”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 espresso: 1}
}

time

History of states

{
 size: “mega”,
 roast: “burnt”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 espresso: 1}
}

time

History of states

{
 size: “mega”,
 roast: “burnt”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1}
}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 almond: 1}
}

time

History of mutations

{operation: “newDefaultCoffee”}

time

{operation: “setRoast”,
 roast: “charcoal”}

{operation: “addAddIn”,
 roast: “soy”}

{operation: “addAddIn”,
 roast: “espresso”}

{
 size: “mega”,
 roast: “charcoal”,
 addIns: {soy: 1,
 espresso: 1}
}

Comparing history models

History of states

• Easy to implement

• Expensive to store

History of mutations

• Hard to set up

• Cheaper to store

• Captures intentions

Domain

What is the problem we're trying
to solve with coffees?

Represent a coffee.

Model how coffees behave.

Turn nouns into classes and

verbs into methods

Encode isA and hasA relationships.

Represent a coffee.

Nouns and verbs => 
Classes and methods

isA/hasA

Classic OODA

Model how coffees behave.

?

Where does the software fit in the process?

Where does the software fit in the process?

How would we do it with paper
and pencil?

Zen out

What is a coffee order?

What is an image?

What is an image?

• A rectangular grid of RGBA values

• A collection of vector graphics elements

• An algorithm for drawing

• Mapping from 2D space to color

• Point -> Color

ericnormand.me/domain-modeling
Introduction + 
6 Chapters + 

2 Supplements = 
250 pages

http://ericnormand.me/domain-modeling

ericnormand.substack.com

Newsletter

