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Software design is subtle



Good information = good decisions — good design
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Commutativity

Order of function calls doesn’t matter

for(let i = 0; i < 100; i++) {
let coffee = anyCoffee();
let addInA = anyAddIn();
let addInB = anyAddIn();
assert(sameCoffee(
coffee.add(addInA) .add(AddInB),
coffee.add(addInB) .add(AddInA)

));

g(f(a)) = £(g(a))

Four More Domain Modeling Lenses

“https://ericnormand.me/speaking/houston-fpug-2024



e Composition

Data

Operations

Time

Domain
Scope
Platform
Volatility

Runnable specifications



Data e Domain

Operations ¢ Scope
Composition o Platform
Time o \olatility

 Runnable specifications



—

=
—
= 2
Super Mega Galactic

%

& &

Burnt Charcoal

5
n- —

~®™  Soymik ~™  Espresso ~®
AN AN AN

/. /.

EA

Hazelnut Chocolate Almond

“size”: "super”,

“roast”: "burnt”,

“add-1ns"”: 1"espresso”

i1 r

soy



Runnable specifications



abstract encode

Domain Code

new look
evaluate



feedback



Model In code




What is modeling?
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Why do we model?

, Model to learn
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0,
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Model to communicate

Model to record data and relationships




Model to learn

 Reduce the number of variables/constrain the problem
 Build as little as possible to answer the question
e Defer decisions that don’t answer question

 Don’t implement

* |Implement with a stub

 Answer the hard questions first



Model to communicate

communicating to programmers, stakeholders, and the computer

* [ry your model on use cases
 Run your model
e Set up scenarios

 Visualize



Model to record data and relationships

* Thisis the goal
 The other steps lead up to this
* Jesting



Separate implementation from
specification



Specification
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Specification

type names
_|_
function signatures

type Cotffee;
type AddIn;
type AddInCollection;

function addIns(coffee) //=> AddInCollection
function addAddIn(coffee, addIn) //=> Coffee

Implementation

type definition
_|_
function body

type Coffee = 3

addIns: AddInCollection;
[

type AddIn = Soy | Espresso | Hazelnut | ..;
type AddInCollection = 3 [addIn: string]: number; #;

function addAddIn(coffee, addIn) : //=> Coffee
return update(coffee, “addIns”, append, addIn);

§



Specification

denotational semantics

function factorial(n) 3
1f(n === 0)
return 1;
else
return n * factorial(n - 1);

Implementation

operational semantics function factorial(n) 3
let ret = 1;
for (let 1 = 1; 1 <= n; 1++)
ret x= 1i:
return ret;

§



Specification
function definition

Assumes existence of four other domain functions

function coffeePrice(coffee) {1 //=> number . size()
return sizePrice(size(coffee)) + * sizePrice()
e addlns()

addInCollectionPrice(addIns(coffee)):

* addInCollectionPrice()

Implementation

function implementation

function coffeePrice(coffee) {1 //=> number Assumes lots:

* sizePrice()
let price = sizePrice(coffee.size)); « structure of coffee (coffee.size)
for (const [addIn, quantity] of coffee.addIns) :Zggfrfgrrfcgfoadd'”s(Ob’eCt)
price += addInPrice(addIn) * quantity; « algorithm for calculating the price

return price;

§



Frequent and rich feedback
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Making decisions is better with feedback

o Stubs

 Work in-memory
 Work iteratively

* less -> more correct
* Work incrementally

e less -> more detall



Time



Every sophisticated model
Includes at least one notion of time
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Different notions of time

(hot comprehensive list, nor are they mutually exclusive)

» Calendar date/time

* Order (x happens before vy)
* As of

* History (audit)

e Future

e Counterfactual



The naive model updates In
place (throwing away history)




Two models of history

* History of states

* History of mutations
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History of mutations

toperation: “newDefaultCoffee”? Soperation: “setRoast”, Soperation: “addAddIn”, toperation: “addAddIn”,
roast: “charcoal”} roast: “soy"} roast: “espresso”f
>
time

size: "“mega”,

roast: “charcoal”,

addIns: {soy: 1,
espresso: 1%



Comparing history models

History of states History of mutations
 Easy to implement  Hard to set up
 EXpensive to store  Cheaper to store

e Captures intentions



Domain



What is the problem we're trying
to solve with coffees?




Represent a coffee.




Model how coffees behave.
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Turn nouns

verbs




Encode isA and hasA relationships.




Represent a coffee. Model how coffees behave.

iISA/hasA
Classic OODA

Nouns and verbs =>
Classes and methods




Where does the software fit in the process?

—

L

un J 2
‘@' > @ - &

000
%

|
______




Where does the software fit in the process?
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How would we do It with paper
and pencil?
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What is an image”



What is an image?

* A rectangular grid of RGBA values

* A collection of vector graphics elements
* An algorithm for drawing

 Mapping from 2D space to color

e Point -> Color
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