Two and a half more Domain
Modeling Lenses

Eric Normand - Houston Functional Programming User Group

grokking

Taming complex software with

SimplicitM

functional thinking L ericnormand.me /g S
Eric Normand | | 577/’ \
Forewords by Guy Steele and Jessica Kerr //
' ericnormand.me/gsm TSSIMPLICITY

RO
\\l‘\\\'\\\,\{\‘!\\l\\\ '

ALY

\ M\g&‘h.“:\\ \

http://ericnormand.me/gs
http://ericnormand.me/gsm

Software design is subtle

Good information = good decisions — good design

Data e Domain

Operations * Scope
Composition e Platform
Time o \olatility

 Runnable specifications

Data e Domain

Operations * Scope
Composition e Platform
Time o \olatility

 Runnable specifications

=

—
Super Mega Galactic “size": "“super”,
Raw Burnt Charcoal “roast”: “burnt”,
P L=
“add-ins”: [“espresso”, “soy”]
Soy milk Espresso
_ t

a8 & 0

Hazelnut Chocolate Almond

y |

Better Software Design with Domain Modeling

https://ericnormand.me/speaking/func-prog-sweden-2023

Data
Operations
Composition

Time

Domain
Scope

Platform

o \olatility

Runnable specifications

Commutativity

Order of function calls doesn’t matter

for(let i = 0; i < 100; i++) {
let coffee = anyCoffee();
let addInA = anyAddIn();
let addInB = anyAddIn();
assert(sameCoffee(
coffee.add(addInA) .add(AddInB),
coffee.add(addInB) .add(AddInA)

));

g(f(a)) = £(g(a))

Four More Domain Modeling Lenses

“https://ericnormand.me/speaking/houston-fpug-2024

e Composition

Data

Operations

Time

Domain
Scope
Platform
Volatility

Runnable specifications

Data e Domain

Operations ¢ Scope
Composition o Platform
Time o \olatility

 Runnable specifications

—

=
—
= 2
Super Mega Galactic

%

& &

Burnt Charcoal

5
n- —

~®™ Soymik ~™ Espresso ~®
AN AN AN

/. /.

EA

Hazelnut Chocolate Almond

“size”: "super”,

“roast”: "burnt”,

“add-1ns"”: 1"espresso”

i1 r

soy

Runnable specifications

abstract encode

Domain Code

new look
evaluate

feedback

Model In code

What is modeling?

S Lo e —
P

P

3 el - =

R A 4 <21
veet s

%
I
=

R

\\

WAL

Why do we model?

, Model to learn
=%
0,

!
| =
|

Model to communicate

Model to record data and relationships

Model to learn

 Reduce the number of variables/constrain the problem
 Build as little as possible to answer the question
e Defer decisions that don’t answer question

 Don’t implement

* |Implement with a stub

 Answer the hard questions first

Model to communicate

communicating to programmers, stakeholders, and the computer

* [ry your model on use cases
 Run your model
e Set up scenarios

 Visualize

Model to record data and relationships

* Thisis the goal
 The other steps lead up to this
* Jesting

Separate implementation from
specification

Specification

runnable cpecifications

N\

English description UML diagrams code

Implementation

code code code

Specification

type names
|
function signatures

type Cotffee;
type AddIn;
type AddInCollection;

function addIns(coffee) //=> AddInCollection
function addAddIn(coffee, addIn) //=> Coffee

Implementation

type definition
|
function body

type Coffee = 3

addIns: AddInCollection;
[

type AddIn = Soy | Espresso | Hazelnut | ..;
type AddInCollection = 3 [addIn: string]: number; #;

function addAddIn(coffee, addIn) : //=> Coffee
return update(coffee, “addIns”, append, addIn);

§

Specification

denotational semantics

function factorial(n) 3
1f(n === 0)
return 1;
else
return n * factorial(n - 1);

Implementation

operational semantics function factorial(n) 3
let ret = 1;
for (let 1 = 1; 1 <= n; 1++)
ret x= 1i:
return ret;

§

Specification
function definition

Assumes existence of four other domain functions

function coffeePrice(coffee) {1 //=> number . size()
return sizePrice(size(coffee)) + * sizePrice()
e addlns()

addInCollectionPrice(addIns(coffee)):

* addInCollectionPrice()

Implementation

function implementation

function coffeePrice(coffee) {1 //=> number Assumes lots:

* sizePrice()
let price = sizePrice(coffee.size)); « structure of coffee (coffee.size)
for (const [addIn, quantity] of coffee.addIns) :Zggfrfgrrfcgfoadd'”s(Ob’eCt)
price += addInPrice(addIn) * quantity; « algorithm for calculating the price

return price;

§

Frequent and rich feedback

abstract encode

Domain Code

new look
evaluate

Making decisions is better with feedback

o Stubs

 Work in-memory
 Work iteratively

* less -> more correct
* Work incrementally

e less -> more detall

Time

Every sophisticated model
Includes at least one notion of time

S Lo e —
P

P

3 el - =

R A 4 <21
veet s

%
I
=

R

\\

WAL

Different notions of time

(hot comprehensive list, nor are they mutually exclusive)

» Calendar date/time

* Order (x happens before vy)
* As of

* History (audit)

e Future

e Counterfactual

The naive model updates In
place (throwing away history)

Two models of history

* History of states

* History of mutations

History of states

1 1 1 1
size: "“mega’”, size: "“mega”, size: "“mega”, size: "“mega”,
roast: “burnt”, roast: “charcoal”, roast: “charcoal”, roast: “charcoal”,
addIns: 1% addIns: 1% addIns: {soy: 1% addIns: {soy: 1,
$ $ $ espresso: 1%
£

time

History of states

1

size: “mega’,

roast:
addIns:

“burnt”,

15

size: “mega’,

roast:
addIns:

“charcoal”,

15

i

§

size: “mega’,
roast: “charcoal”,
addIns: isoy: 1%

size: “mega’,

roast: “charcoal”,

addIns: {soy: 1,
espresso: 1%

time

History of states

] t
size: "“mega”, size: "“mega”,
roast: “burnt”, roast: “charcoal”,
addIns: 1% addIns: 3%

§ §

]
size: “mega’,
roast: “charcoal”,
addIns: isoy: 1%

§

size: “mega’,

roast: “charcoal”,

addIns: {soy: 1,
espresso: 1%

time

History of states

1

size: “mega’,

roast:
addIns:

“burnt”,

15

size: “mega’,

roast:
addIns:

“charcoal”,

15

i

§

size: “mega’,
roast: “charcoal”,
addIns: isoy: 1%

size: “mega’,

roast: “charcoal”,

addIns: {soy: 1,
espresso: 1%

time

History of states

1 1 1 1
size: "“mega’”, size: "“mega”, size: "“mega”, size: "“mega”,
roast: “burnt”, roast: “charcoal”, roast: “charcoal”, roast: “charcoal”,
addIns: 1% addIns: 1% addIns: {soy: 1% addIns: {soy: 1,
§ £ £
£

time

History of mutations

toperation: “newDefaultCoffee”? Soperation: “setRoast”, Soperation: “addAddIn”, toperation: “addAddIn”,
roast: “charcoal”} roast: “soy"} roast: “espresso”f
>
time

size: "“mega”,

roast: “charcoal”,

addIns: {soy: 1,
espresso: 1%

Comparing history models

History of states History of mutations
 Easy to implement Hard to set up
 EXpensive to store Cheaper to store

e Captures intentions

Domain

What is the problem we're trying
to solve with coffees?

Represent a coffee.

Model how coffees behave.

O
C
©
0]
)
N
7))

L
@)
O

e

£

[92)
L®]
o
-
e
()
S
O
e
g =

Turn nouns

verbs

Encode isA and hasA relationships.

Represent a coffee. Model how coffees behave.

iISA/hasA
Classic OODA

Nouns and verbs =>
Classes and methods

Where does the software fit in the process?

—

L

un J 2
‘@' > @ - &

000
%

|

Where does the software fit in the process?

un J 2
‘@' > @ - &

—

ey
%

|

How would we do It with paper
and pencil?

?

ffee order

IS d CO

What

Z

S .1&\N\\\“\h.\“:l|\\“\\h\“t‘
7 Z ——

—_— =

What is an image”

What is an image?

* A rectangular grid of RGBA values

* A collection of vector graphics elements
* An algorithm for drawing

 Mapping from 2D space to color

e Point -> Color

Runnable Specifications

Written by Eric Normand. Published: February 16, 2024. Updated: December 26, 2024.

The content you see here is just a draft and is subject to change.

Table of Contents (short version)

Underlined chapter titles are available to read. Just click on the title (it's a link!).

Introduction

Chapter 1: Data Lens Part 1 — Capture information and its relationships in a data model
Chapter 2: Data Lens Part 2 — Further explorations of encoding relationships in data
Data Lens Supplement

Chapter 3: Operation Lens — Operations are the heart of a domain model

Chapter 4: Composition Lens Part 1 — Capture how operations work together
Chapter 5: Composition Lens Part 2 — Ensure the flexibility your domain demands
Composition Lens Supplement

Chapter 6: Time Lens — Model changes over time explicitly

Chapter 7: Domain Lens — Define the problem to model the right thing

Chapter 8: Volatility Lens — Look at how things change over time

Chapter 9: Scope Lens — Take a lateral approach to solving difficult problems
Chapter 10: Platform Lens — Build mini-models to isolate architectural complexity

Appendix: Annotated Worked Example

ericnormand.me/domain-modelin

Introduction +
6 Chapters +
2 Supplements =
250 pages

http://ericnormand.me/domain-modeling

Newsletter

erichormand.substack.com

