
All I needed for FP I
learned in High
School Algebra

Eric Normand

https://purelyfunctional.tv/

1 2 3 4 5 6

• Sum up all the rocks for the year

• Average # of rocks per day

• Biggest week

• Smallest month

For the video and transcript
of this presentation,

click here:

https://lispcast.com/all-i-needed-for-fp-i-learned-in-high-s
chool-algebra/

https://lispcast.com/all-i-needed-for-fp-i-learned-in-high-school-algebra/
https://lispcast.com/all-i-needed-for-fp-i-learned-in-high-school-algebra/

What makes numbers,
an abstract idea, so

useful for modeling real
piles of rocks?

Correspondence
of

Properties

Information System

Distributed and Concurrent

Parallelization/
Distributed work

In distributed/parallel work, work comes
 back out of order

Order doesn’t matter

4

a

2

b+

6

a b+

2

b

4

a+

6

b a+

a + b = b + a

 (f a b)

 (f a b)
 (f b a)

(= (f a b)
 (f b a))

 (f a)

 (g (f a))

 (g (f a))
 (g a)

 (g (f a))
 (f (g a))

(= (g (f a))
 (f (g a)))

Parallelization/
Distributed work

Need to break up task to give to workers

Need to combine groups of answers

Needs to be cheap to break up and recombine groups

Grouping doesn’t matter

15 3

a b c+ +

6 3

(a + b) c+

9

a + b + c

15 3

a b c+ +

5 4

a (b + c)+

9

a + b + c

(a + b) + c = a + (b + c)

 a b c
 a b c

 (f a b) c
 a b c

 (f a b) c
 a (f b c)

 (f (f a b) c)
 (f a (f b c))

 (f (f a b) c)
 (f a (f b c))

(= (f (f a b) c)
 (f a (f b c)))

Types

return value of f and its two
arguments need to be the same type

(= (f (f a b) c)
 (f a (f b c)))

Whole Values

Combining two piles makes a new pile

Concatenating two lists makes a new list

Self-contained

(defn average [a b]
 (/ (+ a b) 2))

(= (average a b) (average b a))
a = 10, b = 4

Order doesn’t matter

(average 10 4) => 7
(average 4 10) => 7

(= (average (average a b) c)
 (average a (average b c)))
a = 10, b = 4, c = 6

(average 10 4) => 7

(average 7 6) => 6.5

(average 4 6) => 5

(average 10 5) => 7.5

Does grouping matter?

function average(numbers) {
 var sum = 0;
 var count = 0;
 for(i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 count += 1;
 }
 if(count === 0) {
 return null;
 }
 return sum / count;
}

function average(numbers) {
 var sum = 0;
 var count = 0;
 for(i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 count += 1;
 }
 if(count === 0) {
 return null;
 }
 return sum / count;
}

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine (map ->average numbers)))?

Where do you start a computation?

a + 0 = a

 (f a i)

(= (f a i) a)

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine (map ->average numbers)))?

function average(numbers) {
 var sum = 0;
 var count = 0;
 for(i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 count += 1;
 }
 if(count === 0) {
 return null;
 }
 return sum / count;
}

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine [0 0] (map ->average numbers)))

Going back and forth matters

Great for moving into a new space, doing
a calculation, then moving back

{:name “Eric”
 :birthday #inst “1981-07-18”}

"{:name \”Eric\”,…}"

pr-str

send
"{:name \”Eric\”,…}"

{:name “Eric”
 :birthday #inst “1981-07-18”}

read-string

 (f a)

 (g (f a))

(= (g (f a)) a)

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine [0 0]
 (map ->average numbers)))

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average-> [[sum count]]
 (/ sum count))

(defn average [numbers]
 (->> numbers
 (map ->average)
 (reduce combine [0 0])
 average->))

Distributed

Messages arrive one or more times

Distributed

Independent workers have to coordinate to avoid
duplicate work

Duplicates don’t matter

(= (-> m
 (assoc :a “hello”)
 (assoc :a “hello”))
 (-> m
 (assoc :a “hello”))

(= (f a)
 (f a))

(= (f (f a))
 (f a))

(def button-state (atom {}))

(defn press! [button-id]
 (swap! button-state assoc button-id true))

…

(press! :3rd-floor-north-up)

(press! :3rd-floor-north-up)

(press! :3rd-floor-north-up)

Nothing else matters

Know when to end

Circuit-breaking

a * b * c * 0 * d * e * f

a * 0 = 0

 (f a z)

(= (f a z) z)

Splitting up work and recombining it matters

Great for arranging and rearranging work in a pipeline

Composing transducers

(= (->> cars
 (map add-back-wheel)
 (map add-front-wheel))
 (->> cars
 (map (comp
 add-front-wheel
 add-back-wheel))))

(= (map identity a) a)

(= (map identity a) a)

 (map g a)

(= (map identity a) a)

 (map f (map g a))

(= (map identity a) a)

 (map f (map g a))
 (comp f g)

(= (map identity a) a)

 (map f (map g a))
 (map (comp f g) a)

(= (map identity a) a)

(= (map f (map g a))
 (map (comp f g) a))

Conclusions

Commutative Order doesn’t matter (= (f a b) (f b a))

Associative Grouping doesn’t matter (= (f (f a b) c)
 (f a (f b c)))

Identity value Where to start (= (f a i) a)

Zero value When to stop (= (f a z) z)

Idempotence Duplicates don’t matter (= (f (f a)) (f a))

Reversibility Going back and forth (= (g (f a)) a)

Structure
Preservation Rearranging work

(= (m identity a) a)
(= (m (comp f g) a) (m f (m g
a)))

These properties are
what allow us to do

our work

 (= (f a b)
 (f b a)))

(prop/for-all [a S
 b S]
 (= (f a b)
 (f b a)))

(prop/for-all [a gen/int
 b gen/int]
 (= (* a b)
 (* b a)))

Algebraic properties
make great
test.check
properties

Eric Normand
Follow Eric on:

Eric Normand @EricNormand

eric@lispcast.comlispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com
https://www.linkedin.com/in/eric-normand/
https://lispcast.com/
https://lispcast.com/
https://twitter.com/ericnormand
mailto:eric@lispcast.com

