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• Sum up all the rocks for the year

• Average # of rocks per day

• Biggest week

• Smallest month



For the video and transcript 
of this presentation,

click here:

https://lispcast.com/all-i-needed-for-fp-i-learned-in-high-s
chool-algebra/
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What makes numbers, 
an abstract idea, so 

useful for modeling real 
piles of rocks?



Correspondence
of

Properties



Information System

Distributed and Concurrent



Parallelization/
Distributed work

In distributed/parallel work, work comes
 back out of order



Order doesn’t matter
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a + b = b + a



   (f a b)



   (f a b)
   (f b a)



(= (f a b)
   (f b a))



      (f a)



   (g (f a))



   (g (f a))
      (g a)



   (g (f a))
   (f (g a))



(= (g (f a))
   (f (g a)))



Parallelization/
Distributed work

Need to break up task to give to workers

Need to combine groups of answers

Needs to be cheap to break up and recombine groups



Grouping doesn’t matter
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a + b + c
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a + b + c



(a + b) + c = a + (b + c)



         a   b   c
         a   b   c



      (f a    b)  c
         a    b   c



      (f a    b)  c
         a (f b   c)



   (f (f a    b)  c)
      (f a (f b   c))



   (f (f a b) c)
   (f a (f b c))



(= (f (f a b) c)
   (f a (f b c)))



Types

return value of f and its two 
arguments need to be the same type

(= (f (f a b) c)
   (f a (f b c)))



Whole Values

Combining two piles makes a new pile

Concatenating two lists makes a new list

Self-contained



(defn average [a b]
  (/ (+ a b) 2))



(= (average a b) (average b a))
a = 10, b = 4

Order doesn’t matter

(average 10 4)  => 7
(average 4 10)  => 7



(= (average (average a b) c)   
   (average a (average b c)))
a = 10, b = 4, c = 6

(average 10 4)  => 7

(average 7  6)  => 6.5

(average 4  6)  => 5

(average 10 5)  => 7.5

Does grouping matter?



function average(numbers) {
  var sum   = 0;
  var count = 0;
  for(i = 0; i < numbers.length; i++) {
    sum   += numbers[i];
    count += 1;
  }
  if(count === 0) {
    return null;
  }
  return sum / count;
}



function average(numbers) {
  var sum   = 0;
  var count = 0;
  for(i = 0; i < numbers.length; i++) {
    sum   += numbers[i];
    count += 1;
  }
  if(count === 0) {
    return null;
  }
  return sum / count;
}



(defn combine [[sum1 count1] [sum2 count2]]
  [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
  [number 1])

(defn average [numbers]
  (reduce combine   (map ->average numbers)))?



Where do you start a computation?



a + 0 = a



   (f a i)



(= (f a i) a)



(defn combine [[sum1 count1] [sum2 count2]]
  [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
  [number 1])

(defn average [numbers]
  (reduce combine   (map ->average numbers)))?



function average(numbers) {
  var sum   = 0;
  var count = 0;
  for(i = 0; i < numbers.length; i++) {
    sum   += numbers[i];
    count += 1;
  }
  if(count === 0) {
    return null;
  }
  return sum / count;
}



(defn combine [[sum1 count1] [sum2 count2]]
  [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
  [number 1])

(defn average [numbers]
  (reduce combine [0 0] (map ->average numbers)))





Going back and forth matters



Great for moving into a new space, doing 
a calculation, then moving back



{:name “Eric”
 :birthday #inst “1981-07-18”}

"{:name \”Eric\”,…}"

pr-str

send
"{:name \”Eric\”,…}"

{:name “Eric”
 :birthday #inst “1981-07-18”}

read-string



      (f a)



   (g (f a))



(= (g (f a)) a)



(defn combine [[sum1 count1] [sum2 count2]]
  [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
  [number 1])

(defn average [numbers]
  (reduce combine [0 0] 
    (map ->average numbers)))



(defn combine [[sum1 count1] [sum2 count2]]
  [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
  [number 1])

(defn average-> [[sum count]]
  (/ sum count))

(defn average [numbers]
  (->> numbers
    (map ->average)
    (reduce combine [0 0])
    average->))



Distributed

Messages arrive one or more times



Distributed

Independent workers have to coordinate to avoid 
duplicate work



Duplicates don’t matter





(= (-> m
    (assoc :a “hello”)
    (assoc :a “hello”))
   (-> m
    (assoc :a “hello”))



(=    (f a)
      (f a))



(= (f (f a))
      (f a))



(def button-state (atom {}))

(defn press! [button-id]
  (swap! button-state assoc button-id true))

…

(press! :3rd-floor-north-up)

(press! :3rd-floor-north-up)

(press! :3rd-floor-north-up)



Nothing else matters

Know when to end

Circuit-breaking



a * b * c * 0 * d * e * f



a * 0 = 0



   (f a z)



(= (f a z) z)









Splitting up work and recombining it matters

Great for arranging and rearranging work in a pipeline

Composing transducers



(= (->> cars
    (map add-back-wheel)
    (map add-front-wheel))
   (->> cars
    (map (comp
           add-front-wheel
           add-back-wheel))))



(= (map identity a) a)



(= (map identity a) a)

          (map g a)



(= (map identity a) a)

   (map f (map g a))



(= (map identity a) a)

   (map f (map g a))
        (comp f g)



(= (map identity a) a)

   (map f (map g a))
   (map (comp f g) a)



(= (map identity a) a)

(= (map f (map g a))
   (map (comp f g) a))



Conclusions



Commutative Order doesn’t matter (= (f a b) (f b a))

Associative Grouping doesn’t matter (= (f (f a b) c)
   (f a (f b c)))

Identity value Where to start (= (f a i) a)

Zero value When to stop (= (f a z) z)

Idempotence Duplicates don’t matter (= (f (f a)) (f a))

Reversibility Going back and forth (= (g (f a)) a)

Structure 
Preservation Rearranging work

(= (m identity a) a)
(= (m (comp f g) a)   (m f (m g 
a)))



These properties are 
what allow us to do 

our work



  (= (f a b)
     (f b a)))



(prop/for-all [a S
               b S]
  (= (f a b)
     (f b a)))



(prop/for-all [a gen/int
               b gen/int]
  (= (* a b)
     (* b a)))



Algebraic properties 
make great 
test.check 
properties
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