
Eric Normand - Øredev 2023

Stratified design and
functional architecture

grokdev2340% off:

ericnormand.me/gs

http://ericnormand.me/gs

Pure functions Stratified design Onion architecture+ →

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

Actions

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

Actions

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

Actions

Calculations

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

Actions

Calculations

Data

Data
Facts about events.

Data
Facts about events.

• Numbers

Data
Facts about events.

• Numbers

• Strings

Data
Facts about events.

• Numbers

• Strings

• Enums

Data
Facts about events.

• Numbers

• Strings

• Enums

• Collections

Data
Facts about events.

• Numbers

• Strings

• Enums

• Collections

• Etc.

Calculations

Computations from input to output.

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

• +, *, -, /

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

• +, *, -, /

• Math.abs()

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

• +, *, -, /

• Math.abs()

• String concatenation

Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

• +, *, -, /

• Math.abs()

• String concatenation

• Validate an email address

Actions

Affect or are affected by the outside world.

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

• Examples

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

• Examples

• Send an email

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

• Examples

• Send an email

• Read from a database

Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”,
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

• Examples

• Send an email

• Read from a database

• Write to a file

Production

Production

Build server

Production

Build server

Production

Build server

Production

Build server

Production

Build server

Actions are harder to run
safely in production

Actions are harder to
debug

Calculations Actions☝

Calculations Actions☝

Calculations Actions

Calculations Actions

Spreading rule
function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

Spreading rule

function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

Spreading rule

Spreading rule
function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

Spreading rule
function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

Spreading rule
function figurePayout(affiliate) {
 var owed = affiliate.sales * affiliate.commission;
 if(owed > 100)
 sendPayout(affiliate.bank_code, owed);
}

function affiliatePayout(affiliates) {
 for(var a = 0; a < affiliates.length; a++)
 figurePayout(affiliates[a]);
}

function main(affiliates) {
 affiliatePayout(affiliates);
}

Call stack

main()

affiliatePayout()

figurePayout()

Call stack

main()

affiliatePayout()

figurePayout()

calculation()

calculation()

calculation()

Call stack

main()

affiliatePayout()

figurePayout()

calculation()

calculation()

calculation()

action()

Call stack

main()

affiliatePayout()

figurePayout()

calculation()

calculation()

calculation()

action()

Call stack

main()

affiliatePayout()

figurePayout()

calculation()

calculation()

calculation()

Extracting calculations
CouponDog

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 subscribers.forEach((s) => {
 emailSystem.send({
 from: “newsletter@coupondog.co",
 to: s.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 });
 });
}

mailto:newsletter@coupondog.co

Extracting calculations

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 subscribers.forEach((s) => {
 emailSystem.send({
 from: “newsletter@coupondog.co",
 to: s.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 });
 });
}

CouponDog

mailto:newsletter@coupondog.co

Extracting calculations
CouponDog

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 subscribers.forEach((s) => {
 emailSystem.send({
 from: “newsletter@coupondog.co",
 to: s.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 });
 });
}

mailto:newsletter@coupondog.co

function emailForSubscriber(subscriber, coupons) {
 return {
 from: “newsletter@coupondog.co",
 to: subscriber.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 };
}

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 subscribers.forEach((s) => {
 emailSystem.send(
 emailForSubscriber(s, coupons)
);
 });
}

mailto:newsletter@coupondog.co

function emailForSubscriber(subscriber, coupons) {
 return {
 from: “newsletter@coupondog.co",
 to: subscriber.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 };
}

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 const emails = subscribers.map(
 (s) => emailForSubscriber(s, coupons)
);
 emails.forEach((e) => emailSystem.send(e));

}

mailto:newsletter@coupondog.co

Common questions

Isn’t it inefficient to create every email? 
What if we have billions of users?

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 const subscribers = fetchSubscribersFromDB();
 const emails = subscribers.map(
 (s) => emailForSubscriber(s, coupons)
);
 emails.forEach((e) => emailSystem.send(e));

}

function emailForSubscriber(subscriber, coupons) {
 return {
 from: “newsletter@coupondog.co",
 to: subscriber.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 };
}

mailto:newsletter@coupondog.co

function sendIssue() {
 const coupons = fetchCouponsFromDB();
 let page = 0;
 let subscribers = fetchSubscribersFromDB(page);
 while(subscribers.length > 0) {
 const emails = subscribers.map(
 (s) => emailForSubscriber(s, coupons)
);
 emails.forEach((e) => emailSystem.send(e));
 page += 1;
 subscribers = fetchSubscribersFromDB(page);
 }
}

function emailForSubscriber(subscriber, coupons) {
 return {
 from: “newsletter@coupondog.co",
 to: subscriber.email,
 subject: “Your best weekly coupons inside”,
 body: “Here are the best coupons: “ +
 coupons.join(“, “)
 };
}

mailto:newsletter@coupondog.co

Pure functions Stratified design Onion architecture+ →✔

sendIssue()

fetch*DB() emailSystem.send() emailForSubscriber()

sendIssue()

fetch*DB() emailSystem.send() emailForSubscriber()

DB Email Service String concatenation

String Object

sendIssue()

emailForSubscriber()

String concatenation

String Object

sendIssue()

emailForSubscriber()

String concatenation

String Object

Chemistry 
protein, acid, heat, etc.

Fundamental cooking techniques
chopping, stirring, applying heat, etc.

Cuisine building blocks
redning, långkok, etc.

Dishes
ärtsoppa, rotmos med fläsk, gravlax, etc.

Stratified design

JavaScript

Libraries

E-commerce

Pizza shops

My pizza shop app

Stratified design

String

Basic string ops

Regex

Email address validation

most
reusable

most
reusable

changes 
frequently

most
reusable

changes 
frequently

most
worth
testing

Specific

General

Pure functions Stratified design Onion architecture+ →✔ ✔

Traditional layered architecture

Application

Web Interface

Database

Traditional layered architecture

Domain op 1

Web handler

Database

Domain op 2

Domain op 1

Web handler

Database

Web handler

DatabaseDomain op 2 Domain op 1 Domain op 2

Libraries

JavaScript

Domain op 1

Web handler

Database

Web handler

DatabaseDomain op 2 Domain op 1 Domain op 2

Libraries

JavaScript

Interaction

Domain

Language

Onion architecture
Interaction

Domain

Language
DB Email

Server

Web
requests

Onion architecture
also known as

• Ports and adapters

• Hexagonal architecture

• Functional core, imperative shell

Common questions

What if your domain rule
needs to ask the DB?

Onion architecture
Interaction

Domain

Language
DB Email

Server

Is it really a domain rule?

var image = newImageDB.getImage(‘123’);

if(image === undefined)
 image = oldImageDB.getImage(‘123’);

var image = newImageDB.getImage(‘123’);

if(image === undefined)
 image = oldImageDB.getImage(‘123’);

Domain terms:

product, image, price, discount

Non-domain terms:

database, old, new

It belongs in the
interaction layer.

function generateReport(products) {
 return reduce(products, “”, (report, product) =>
 report + product.name + “ “ + product.price + “\n”);
}

const productsLastYear = db.fetchProducts(‘last year’);
const reportLastYear = generateReport(productsLastYear);

function generateReport(products) {
 return reduce(products, “”, (report, product) =>
 report + product.name + “ “ + product.price + “\n”);
}

const productsLastYear = db.fetchProducts(‘last year’);
const reportLastYear = generateReport(productsLastYear);

{
 name: “shoes”,
 price: 3.99,
 discountID: ‘2311’
}

{
 name: “watch”,
 price: 223.43,
 discountID: null
}

function generateReport(products) {
 return reduce(products, “”, (report, product) =>
 report + product.name + “ “ + product.price +
 “ discount: “ + (product.discount || 0) + “%\n”);
}

const productsLastYear = db.fetchProducts(‘last year’);

const productsWithDiscounts = map(productsLastYear, (product) => {
 if(product.discountID)
 product.discount = db.fetchDiscount(product.discountID);
 return product;
});

const reportLastYear = generateReport(productsWithDiscounts);

Don’t overcomplicate

{“firstname”: “Eric”,
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]

Actions

Calculations

Data

Web handler

Database Domain op 1 Domain op 2

Libraries

JavaScript

Interaction

Domain

Language

Domain Interaction

DB

Email
Server

Web
requests

Domain Interaction

DB

Email
Server

Web
requests

Create User

Send EmailSave User validatePassword validateEmail

Onion Architecture

Process Pizza
Order

Send EmailSave
Order

Calculate
VAT

Apply
Discount

Onion Architecture

Process credit
card

Validate
Order

Pure functions Stratified design Onion architecture+ →✔ ✔ ✔

grokdev2340% off:

ericnormand.me/gs

ericnormand.me

http://ericnormand.me/gs
http://ericnormand.me

