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{“firstname”: “Eric”, 
 “lastname”: “Normand”}

sendEmail(to, from, subject, body)

sum(numbers)

saveUserDB(user)

stringLength(str)

getCurrentTime()

[1, 10, 2, 45, 3, 98]
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Data
Facts about events.

• Numbers

• Strings

• Enums

• Collections

• Etc.
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Calculations

Computations from input to output.

• Also known as “pure functions” or “mathematical functions”.

• Examples

• +, *, -, /

• Math.abs()

• String concatenation

• Validate an email address
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Actions

Affect or are affected by the outside world.

• Also known as “impure functions”, “side-effecting functions”, 
“functions with side-effects”.

• Rule of thumb: Depend on how many times or when they are run.

• Examples

• Send an email

• Read from a database

• Write to a file
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Actions are harder to run 
safely in production



Actions are harder to 
debug
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Spreading rule
function figurePayout(affiliate) { 
  var owed = affiliate.sales * affiliate.commission; 
  if(owed > 100) 
    sendPayout(affiliate.bank_code, owed); 
} 

function affiliatePayout(affiliates) { 
  for(var a = 0; a < affiliates.length; a++) 
    figurePayout(affiliates[a]); 
} 

function main(affiliates) { 
  affiliatePayout(affiliates); 
}
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Extracting calculations
CouponDog

function sendIssue() { 
  const coupons     = fetchCouponsFromDB(); 
  const subscribers = fetchSubscribersFromDB(); 
  subscribers.forEach((s) => { 
    emailSystem.send({ 
      from: “newsletter@coupondog.co", 
      to: s.email, 
      subject: “Your best weekly coupons inside”, 
      body: “Here are the best coupons: “ + 
            coupons.join(“, “) 
    }); 
  }); 
}
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function emailForSubscriber(subscriber, coupons) { 
  return { 
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    body: “Here are the best coupons: “ + 
            coupons.join(“, “) 
  }; 
}

function sendIssue() { 
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  const subscribers = fetchSubscribersFromDB(); 
  subscribers.forEach((s) => { 
    emailSystem.send( 
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    ); 
  }); 
}
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function emailForSubscriber(subscriber, coupons) { 
  return { 
    from: “newsletter@coupondog.co", 
    to: subscriber.email, 
    subject: “Your best weekly coupons inside”, 
    body: “Here are the best coupons: “ + 
            coupons.join(“, “) 
  }; 
}

function sendIssue() { 
  const coupons     = fetchCouponsFromDB(); 
  const subscribers = fetchSubscribersFromDB(); 
  const emails      = subscribers.map( 
    (s) => emailForSubscriber(s, coupons) 
  ); 
  emails.forEach((e) => emailSystem.send(e)); 

}

mailto:newsletter@coupondog.co


Common questions



Isn’t it inefficient to create every email? 
What if we have billions of users?



function sendIssue() { 
  const coupons     = fetchCouponsFromDB(); 
  const subscribers = fetchSubscribersFromDB(); 
  const emails      = subscribers.map( 
    (s) => emailForSubscriber(s, coupons) 
  ); 
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}
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function sendIssue() { 
  const coupons = fetchCouponsFromDB(); 
  let page = 0; 
  let subscribers = fetchSubscribersFromDB(page); 
  while(subscribers.length > 0) { 
    const emails = subscribers.map( 
      (s) => emailForSubscriber(s, coupons) 
    ); 
    emails.forEach((e) => emailSystem.send(e)); 
    page += 1; 
    subscribers = fetchSubscribersFromDB(page); 
  } 
}

function emailForSubscriber(subscriber, coupons) { 
  return { 
    from: “newsletter@coupondog.co", 
    to: subscriber.email, 
    subject: “Your best weekly coupons inside”, 
    body: “Here are the best coupons: “ + 
            coupons.join(“, “) 
  }; 
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Chemistry 
protein, acid, heat, etc.

Fundamental cooking techniques 
chopping, stirring, applying heat, etc.

Cuisine building blocks 
redning, långkok, etc.

Dishes 
ärtsoppa, rotmos med fläsk, gravlax, etc.

Stratified design



JavaScript

Libraries

E-commerce

Pizza shops

My pizza shop app

Stratified design



String

Basic string ops

Regex

Email address validation





most 
reusable



most 
reusable

changes 
frequently



most 
reusable

changes 
frequently

most 
worth 
testing





Specific

General
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Traditional layered architecture

Application

Web Interface

Database
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DatabaseDomain op 2 Domain op 1 Domain op 2

Libraries

JavaScript

Interaction

Domain

Language



Onion architecture
Interaction

Domain

Language
DB Email 

Server

Web 
requests



Onion architecture
also known as

• Ports and adapters 

• Hexagonal architecture 

• Functional core, imperative shell



Common questions



What if your domain rule 
needs to ask the DB?



Onion architecture
Interaction

Domain

Language
DB Email 

Server



Is it really a domain rule?



var image = newImageDB.getImage(‘123’); 
 
if(image === undefined) 
  image = oldImageDB.getImage(‘123’);



var image = newImageDB.getImage(‘123’); 
 
if(image === undefined) 
  image = oldImageDB.getImage(‘123’);

Domain terms: 

product, image, price, discount

Non-domain terms: 

database, old, new



It belongs in the 
interaction layer.



function generateReport(products) { 
  return reduce(products, “”, (report, product) =>  
    report + product.name + “ “ + product.price + “\n”); 
} 

const productsLastYear = db.fetchProducts(‘last year’); 
const reportLastYear   = generateReport(productsLastYear);



function generateReport(products) { 
  return reduce(products, “”, (report, product) =>  
    report + product.name + “ “ + product.price + “\n”); 
} 

const productsLastYear = db.fetchProducts(‘last year’); 
const reportLastYear   = generateReport(productsLastYear);

{ 
  name: “shoes”, 
  price: 3.99, 
  discountID: ‘2311’ 
}

{ 
  name: “watch”, 
  price: 223.43, 
  discountID: null 
}



function generateReport(products) { 
  return reduce(products, “”, (report, product) =>  
    report + product.name + “ “ + product.price +  
     “ discount: “ + (product.discount || 0) + “%\n”); 
} 

const productsLastYear = db.fetchProducts(‘last year’); 

const productsWithDiscounts = map(productsLastYear, (product) => { 
  if(product.discountID) 
    product.discount = db.fetchDiscount(product.discountID); 
  return product; 
}); 

const reportLastYear   = generateReport(productsWithDiscounts);



Don’t overcomplicate
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Web handler

Database Domain op 1 Domain op 2

Libraries

JavaScript

Interaction

Domain

Language



Domain Interaction
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Server
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requests



Domain Interaction

DB

Email 
Server

Web 
requests



Create User

Send EmailSave User validatePassword validateEmail

Onion Architecture



Process Pizza 
Order

Send EmailSave 
Order

Calculate 
VAT

Apply 
Discount

Onion Architecture

Process credit 
card

Validate 
Order



Pure functions Stratified design Onion architecture+ →✔ ✔ ✔
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