
The Elements of a
Functional Mindset

Eric Normand

https://purelyfunctional.tv/

What is uniquely
human?

The purpose of abstraction is
not to be vague, but to
create a new semantic level
in which one can be
absolutely precise.

Edsger Dijkstra

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

No :(

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

100

754

Current average: 754/100 = 7.54
Read average: ???/100 = ???

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

100

801

Current average: 754/100 = 7.54
Read average: ???/100 = ???

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

101

801

Current average: 754/100 = 7.54; 801/101 = 7.93
Read average: 801/100 = 8.01

Problem:
“In-between” state.

Solution:
Make mutation atomic.

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

100
754

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-sum + (:score record))
 (swap! record-count + 1))
 (/ @record-sum @record-count))

100
754

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (/ @record-sum @record-count))

100
754

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (/ @record-sum @record-count))

100
754

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

100
754

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records []
 (doseq [record (fetch-records)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

100
754

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records [id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

100
754

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records [id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

100
754

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

Problem:
Threads will write over each

other in global state.

Solution:
Make state local.

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records [id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

100
754

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum 0
 :count 0}))

(defn average-records [id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0})]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (let [{:keys [sum count]} @record-average]
 (/ sum count))))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0})]
 (future
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)}))))
 (fn []
 (let [{:keys [sum count]} @record-average]
 (/ sum count)))))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

state:

non-atomic -> atomic
global -> local

more meaningful

more general
more precise

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (swap! record-average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)})))
 (swap! record-average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn []
 (let [{:keys [sum count finished]}
 @record-average]
 [(/ sum count) finished]))))

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn [] (calculate-average @record-average))))

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn [] (calculate-average @record-average))))

Some sets of records are in the Database (fetched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn [] (calculate-average @record-average))))

Some sets of records are in the Database (fetched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

Problem:
Side effect “buried” in logic.

Solution:
Separate side effect, call it elsewhere,

and pass result as argument.

(defn accumulate-average [record-average id]
 (doseq [record (fetch-records id)]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average id))
 (fn [] (calculate-average @record-average))))

Some sets of records are in the Database (fetched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

(defn accumulate-average [record-average records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [id]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average (fetch-records id)))
 (fn [] (calculate-average @record-average))))

Some sets of records are in the Database (fetched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

(defn accumulate-average [record-average records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average records))
 (fn [] (calculate-average @record-average))))

Some sets of records are in the Database (fetched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

side effects:
buried -> separated

(defn accumulate-average [record-average records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average records))
 (fn [] (calculate-average @record-average))))

(defn accumulate-average [record-average records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average records))
 (fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (:score record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average records))
 (fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

Problem:
Our function depends on
internal structure of data.

Solution:
Abstract the structure using a

fn argument.

(defn accumulate-average [record-average f records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [f records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average f records))
 (fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average f records]
 (doseq [record records]
 (swap! record-average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f record))
 :count (+ count 1)
 :finished false})))
 (swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average-records [f records]
 (let [record-average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average record-average f records))
 (fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [average f vals]
 (doseq [val vals]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average average f vals))
 (fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [average f vals]
 (doseq [val vals]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [average f vals]
 (doseq [val vals]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

Problem:
What we calculate is buried in

how we calculate it.

Solution:
Dig out structure into one

place.

(defn accumulate-average [average f vals]
 (doseq [val vals]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 (future (accumulate-average average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum average f vals]
 (doseq [val vals]
 (accum val))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))]
 (future (accumulate-average accum average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum average f vals]
 (doseq [val vals]
 (accum val))
 (swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))]
 (future (accumulate-average accum average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum finish average f vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))]
 (future (accumulate-average accum finish average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum finish average f vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))]
 (future (accumulate-average accum finish average f vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))]
 (future (accumulate accum finish vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn calculate-average [{:keys [sum count finished]}]
 [(/ sum count) finished])

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))]
 (future (accumulate accum finish vals))
 (fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))
 current (fn []
 (let [{:keys [sum count finished]} @average]
 [(/ sum count) finished]))]
 (future (accumulate accum finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn average [f vals]
 (let [average (atom {:sum 0
 :count 0
 :finished false})
 accum (fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 finish (fn [] (swap! average assoc :finished true))
 current (fn []
 (let [{:keys [sum count finished]} @average]
 [(/ sum count) finished]))]
 (future (accumulate accum finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))
(defn average-accumulator [f]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 [(fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (fn [] (swap! average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]} @average]
 [(/ sum count) finished]))]))
(defn average [f vals]
 (let [[accum finish current] (average-accumulator f)]
 (future (accumulate accum finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))
(defn average-accumulator [f]
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 [(fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum (f val))
 :count (+ count 1)
 :finished false})))
 (fn [] (swap! average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]} @average]
 [(/ sum count) finished]))]))
(defn average [f vals]
 (let [[accum finish current] (average-accumulator f)]
 (future (accumulate accum finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))
(defn average-accumulator []
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 [(fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum val)
 :count (+ count 1)
 :finished false})))
 (fn [] (swap! average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @average]
 [(/ sum count) finished]))]))
(defn average [f vals]
 (let [[accum finish current] (average-accumulator)]
 (future (accumulate (comp accum f) finish vals))
 current))

Now we need to calculate the sum. Can we express that?
(average :score (fetch-records 10))

(average :age (fetch-records 10))

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn average-accumulator []
 (let [average (atom {:sum 0
 :count 0
 :finished false})]
 [(fn [val]
 (swap! average
 (fn [{:keys [sum count]}]
 {:sum (+ sum val)
 :count (+ count 1)
 :finished false})))
 (fn [] (swap! average assoc :finished true))
 (fn []
 (let [{:keys [sum count finished]}
 @average]
 [(/ sum count) finished]))]))
(defn average [f vals]
 (let [[accum finish current] (average-accumulator)]
 (future (accumulate (comp accum f) finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
 (doseq [val vals]
 (accum val))
 (finish))

(defn sum-accumulator []
 (let [average (atom {:sum 0
 :finished false})]
 [(fn [val]
 (swap! average
 (fn [{:keys [sum]}]
 {:sum (+ sum val)
 :finished false})))
 (fn [] (swap! average assoc :finished true))
 (fn []
 (let [{:keys [sum finished]}
 @average]
 [sum finished]))]))

(defn sum [f vals]
 (let [[accum finish current] (sum-accumulator)]
 (future (accumulate (comp accum f) finish vals))
 current))

Now we need to calculate the sum. Can we express that?

(average :score (fetch-records 10))

(average :age (fetch-records 10))

(sum :score (fetch-records 12))

dependencies:
concrete structure -> abstraction
disparate structure -> consolidated

Eric Normand
Follow Eric on:

Eric Normand @EricNormand
eric@lispcast.comlispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://www.linkedin.com/in/eric-normand/
https://lispcast.com

