
Eric Normand - May 7, 2024

Virtual Threads in Clojure
Implications and practices

OS threads are limited
(bottleneck)

L = r W

Little’s law

concurrent requests requests per second

time to process request

L = r W
Thread-per-request HTTP server

• Year 1

• r = 200 requests per second

• W = 50 ms to process each request

• L = 200/s x 50ms = 10 requests => 10 threads

• Year 2

• r = 2000 requests per second

• W = 50 ms to process each request

• L = 2000/s x 50ms = 100 requests => 100 threads

Time

Threads

OS Thread Limit

Hardware Limit

Async programming
One possible solution

• Benefits

• Lightweight

• Garbage-collectable

• Costs

• Callback hell

• Stacktraces!

• Exceptions!

• Can’t use existing libraries

• Can’t use existing tooling

callbacks, core.async, Promesa, interceptors, ring async

Virtual Threads
Basically all the benefits of async AND threads

• Benefits

• Lightweight

• Garbage-collectable

• Stacktraces

• Exceptions

• Existing libraries

• Existing tooling (debuggers, profilers, etc.)

threads implemented in the JVM, run on an OS thread pool

• Costs

• Bottleneck moves elsewhere

• Limitations

• CPU-bound

• Synchronized

Brass tacks

• JDK 21 — LTS — adoptium.net

• Instance of java.lang.Thread

• Recommendation: Use one virtual thread per task

• Example: One virtual thread per HTTP request

• Don’t pool them — let them run, end, and be garbage collected

http://adoptium.net

Things you oughtn’t to do

• CPU-bound computation

• Hot-loops

• atoms? refs?

• Solutions:

• Thread.sleep()

• Thread.yield()

• not using atoms?

• synchronized keyword

• synchronized blocks and methods

• (locking …) macro

• Solutions:

• j.u.c.locks.ReentrantLock

Things you can do

• Blocking I/O

• Blocking primitives

• Locks

• Queues

• Futures

• core.async blocking operations <!!, >!!, etc.

• Thread.sleep() and .yield()

Creating virtual threads
3 ways

j.u.c.Executors/newVirtualThreadPerTaskExecutor

(defonce executor (Executors/newVirtualThreadPerTaskExecutor))

;; call .submit method with a 0-argument function
(def f (.submit executor (fn [] 4)))

(type f) ;; .submit returns a future

;; get the value with deref or the .get method
;; will block until the value is ready
@f
(.get f)

Creating virtual threads
3 ways

java.lang.Thread/startVirtualThread

(Thread/startVirtualThread #(println "Hello"))

Creating virtual threads
3 ways

java.lang.Thread/ofVirtual Builder

(-> (Thread/ofVirtual) (.name "My Tread") (.start #(println “Wow")))

(-> (Thread/ofVirtual) (.unstarted #(println “Wow")))

Sharing state without atoms or refs
Single writer

(defonce keep-going? (atom true))
(defonce executor (Executors/newVirtualThreadPerTaskExecutor))

(dotimes [n 10]
 ;; loop with a sleep, so it's fine
 (.submit executor (fn []
 (while @keep-going?
 (println "Still alive!")
 (Thread/sleep 1000)))))

;; signal to stop threads after 25 seconds
(.submit executor (fn []
 (Thread/sleep 25000)
 (reset! keep-going? false)))

Sharing state without atoms or refs
java.util.concurrent Collections

(import '(java.util.concurrent Executors ConcurrentHashMap CountDownLatch))
(defonce executor (Executors/newVirtualThreadPerTaskExecutor))

(defn fetch-urls [urls]
 (let [results (ConcurrentHashMap.)
 latch (CountDownLatch. (count urls))]
 (doseq [url urls]
 (.submit executor (fn []
 (.put results url (slurp url))
 (.countDown latch))))
 (.submit executor (fn []
 (.await latch)
 (into {} results)))))

@(fetch-urls ["http://example.com/1", "http://example.com/2", "http://example.com/3"])

Sharing state without atoms or refs
Not sharing state???

(defonce executor (Executors/newVirtualThreadPerTaskExecutor))

(defn fetch-urls [urls]
 (.submit executor (fn []
 (let [futures (doall  
 (map (fn [url]  
 (.submit executor #(vector url (slurp url)))  
 urls)))]
 (into {} (map deref) futures)))))

@(fetch-urls ["http://example.com/1", "http://example.com/2", "http://example.com/3"])

Communication and coordination

• core.async

• Promesa

• Manifold

• java.util.concurrent

• CountdownLatch

• ArrayBlockingQueue

• Semaphore

• etc.

What’s coming next?
2 related projects

• Structured Concurrency

• Represent hierarchical tasks

• Fan-out, fan-in

• Scoped Values

• Immutable values scoped to a thread and its subthreads

