

Speaker

Eric Normand

job: Scrive http://scrive.com

twitter: @ericnormand

email: ericwnormand@gmail.com

Slides

available at http://lispcast.com/haskell-slides

Intro to Haskell
April 12, 2012

http://scrive.com/
http://lispcast.com/haskell-slides

A language that doesn't affect the way you think
about programming, is not worth knowing.

A language that doesn't affect the way you think
about programming, is not worth knowing.

– Alan Perlis

why?

● get started in Haskell
● speak intelligently about Haskell
● get a feel for Haskell
● learn from my mistakes

especially if you typically use dynamic
languages

me

● not an expert
● working > 1 year in Haskell
● learned on the job
● prefer dynamic languages
● appreciate static checking

Haskell

● static & strong type system
● purely functional
● lazy evaluation

Haskell

● static & strong type system
● purely functional
● lazy evaluation

● significant whitespace
● compiled
● garbage collected
● pattern matching
● from academia (but still practical)

type system

● static typing
● types known at compile time
● some explicit
● some inferred
● thrown away at compile time

type system

● static typing
● types known at compile time
● some explicit
● some inferred
● thrown away at compile time

● strong typing
● all expressions have a type

type system

● static typing
● types known at compile time
● some explicit
● some inferred
● thrown away at compile time

● strong typing
● all expressions have a type

if the compiler cannot determine the exact
type, compilation fails

purely functional & lazy

● functions are values (with types)

purely functional & lazy

● functions are values (with types)
● higher order

purely functional & lazy

● functions are values (with types)
● higher order

● no mutable state by default

purely functional & lazy

● functions are values (with types)
● higher order

● no mutable state by default
● new values
● names can be used once in a scope

purely functional & lazy

● functions are values (with types)
● higher order

● no mutable state by default
● new values
● names can be used once in a scope

● lazy evaluation

purely functional & lazy

● functions are values (with types)
● higher order

● no mutable state by default
● new values
● names can be used once in a scope

● lazy evaluation
● “nothing” computed until needed

purely functional & lazy

● functions are values (with types)
● higher order

● no mutable state by default
● new values
● names can be used once in a scope

● lazy evaluation
● “nothing” computed until needed

separate out calculations from side effects

Programming in Haskell is like having a logician
on your shoulder.

Programming in Haskell is like having a logician
on your shoulder.

– me

stuff that is type safe
stuff that you want to do

stuff that is type safe
stuff that you want to do

heaven

stuff that is type safe
stuff that you want to do

heaven

hell

purgatory

show me the code, already!

http://www.flickr.com/photos/60414609@N00/5298363220/

constants

a = 10

pi = 3.14159

name = “Eric”

pisquared = pi * pi

great for fib

fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

lists

map _ [] = []

map f (x:xs) = f x : map f xs

concat [] l2 = l2

concat (l:ls) l2 = l : concat ls l2

types

a :: Int
a = 10

types

a :: Int
a = 10

name :: String
name = “Eric”

types

a :: Int
a = 10

name :: String
name = “Eric”

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

types

a :: Int
a = 10

name :: String
name = “Eric”

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

functions all the way down

double x = 2 * x

functions all the way down

double x = 2 * x

double = 2 *

functions all the way down

double x = 2 * x

double = 2 *

(*) :: Int → Int → Int

(*) :: Int → (Int → Int)

functions all the way down

double x = 2 * x

double = 2 *

(*) :: Int → Int → Int

(*) :: Int → (Int → Int)

double :: Int → Int

(2 *) :: Int → Int

scoping

● function application
● left to right

f g h 1 ==> (((f g) h) 1)

map map square [[1,2],[3,4]]

 ==> (((map map) square) [[1,2],[3,4]])

map (map square) [[1,2],[3,4]]

take a break

we are about to embark
on a journey deep into the type system

 http://www.flickr.com/photos/samrich2003/5654034532/

you cannot ignore types

● in Java, you look at types and think “this
method takes a string, an int, and returns a list”
● that's all you need to think about

● in Haskell, this is enough to get you started but
you will hit a ceiling

master the types or they will master you

typical dynamic class diagram

Object

Class

cl
as

s

“Eric”

pa
re

nt
String

pa
re

nt

objects have a class

classes have a parent

classes are objects

typical dynamic class diagram

Object

Class

cl
as

s

“Eric”

pa
re

nt
String

pa
re

nt

objects have a class

classes have a parent

classes are objects

parent:null

typical dynamic class diagram

Object

Class

cl
as

s

“Eric”

pa
re

nt
String

pa
re

nt

class

objects have a class

classes have a parent

classes are objects

parent:null

typical dynamic class diagram

Object

Class

cl
as

s

“Eric”

pa
re

nt
String

pa
re

nt

class

class

objects have a class

classes have a parent

classes are objects

parent:null

typical dynamic class diagram

Object

Class

cl
as

s

“Eric”

pa
re

nt
String

pa
re

nt

class

class

objects have a class

classes have a parent

classes are objects

parent:null

class

Haskell types

“Eric” 100 [1,2,3]values

Haskell types

“Eric” 100 [1,2,3]values

String Int [Int]types

Haskell types

“Eric” 100 [1,2,3]values

String Int [Int]types

Show Numtype classes Monad

Maybe

● ever thrown a null pointer exception?
● Maybe is the answer

data Maybe a = Nothing | Just a

Maybe

● ever thrown a null pointer exception?
● Maybe is the answer

data Maybe a = Nothing | Just a

find :: (a → Bool) → [a] → Maybe a

Maybe

● ever thrown a null pointer exception?
● Maybe is the answer

data Maybe a = Nothing | Just a

find :: (a → Bool) → [a] → Maybe a

find _ [] = Nothing

Maybe

● ever thrown a null pointer exception?
● Maybe is the answer

data Maybe a = Nothing | Just a

find :: (a → Bool) → [a] → Maybe a

find _ [] = Nothing

find p (x:_) | p x = Just x

Maybe

● ever thrown a null pointer exception?
● Maybe is the answer

data Maybe a = Nothing | Just a

find :: (a → Bool) → [a] → Maybe a

find _ [] = Nothing

find p (x:_) | p x = Just x

find p (_:xs) = find p xs

a little safety

case find even [1,3,5,7] of

Just n → …

Nothing → ...

● compiler will complain if you patter match and
forget to check for all cases

● but there are still holes
● fromJust :: Maybe a → a
● errors if it's Nothing

type classes

● used for compile-time polymorphism
● huh?

● they define an interface
● set of functions
● implementations for a given type

type classes

● used for compile-time polymorphism
● huh?

● they define an interface
● set of functions
● implementations for a given type

http://www.flickr.com/photos/24853457@N00/10675300/

example please!

type class Show

class Show a where

 show :: a → String

instance Show String where

 show s = s

instance Show Int where

 show = intToString

type class Num

class Num a where

 (+) :: a → a → a

 (*) :: a → a → a

 (-) :: a → a → a

 (/) :: a → a → a

instance Num Int where

 (+) = intPlus

 (*) = intTimes

 (-) = intMinus

 (/) = intDivide

Monad

● don't panic
● not that hard
● a way to compose actions
● type class

● with type parameter

● IO is a special Monadic type handed down from
the gods (the Haskell compiler/runtime)

Monad

● don't panic
● not that hard
● a way to compose actions
● IO is a special Monad handed down from the

gods

Monad type class

class Monad m where

 –- bind (or then)

 (>>=) :: m a -> (a -> m b) -> m b

 –- create a new value in the Monad

 return :: a -> m a

Maybe is a Monad

● Maybe is common. You don't want to indent
every time you need to check for Nothing.

● Monads can help.

instance Monad Maybe where

 Nothing >>= _ = Nothing

 (Just a) >>= f = f a

 return = Just

using our Monad

readint :: String → Maybe Int

index :: [a] → Int → Maybe a

readint s >>= index [1,2,3]

dev environment

● Haskell Platform
● emacs (or any text editor)

● haskell-mode
– insert type signatures
– interactive shell

● vim has syntax highlighting
● haskellmode

● apt-get install cabal-install

http://hackage.haskell.org/platform/
http://www.haskell.org/haskellwiki/Haskell_mode_for_Emacs
http://projects.haskell.org/haskellmode-vim/

books and tutorials

● Real World Haskell
● free online

● Learn you a Haskell for Great Good
● free online

● I cannot recommend a Monad tutorial
● The Monad Reader (newsletter)

http://book.realworldhaskell.org/
http://learnyouahaskell.com/
http://themonadreader.wordpress.com/

resources

● hoogle : search engine for Haskell libraries
● understands types and special characters

● hackage : Haskell library repository
● versioned libraries with dependencies
● wild west

http://www.haskell.org/hoogle/
http://hackage.haskell.org/packages/hackage.html

final tips

● Haskell is used for two things
● programming
● theorem proving

● More blog posts are written for the second one
● Compile often; make the compiler your friend
● Learn the standard libraries
● Model your problem in types

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

